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Abstract 
 
 Extreme value theory has recently emerged as a newly developed statistical 
modeling tool for the analysis of extreme observations. This research paper focuses on 
parametric modeling of mortality rate for the elderly and the oldest population, 
together with the limiting age.  
 

 
 A classic threshold model is fitted to the data of each year using maximum 
likelihood methodology, separated by categories of year and sex. Then a model with 
transformed generalized Pareto distribution is fitted using a hyperbolic transformation, 
where the limiting age is introduced as a new parameter. The third model, a 
transformed exponential distribution, fits the data best and has good explanation. Log-
likelihood functions for all models are given to find parameter estimations together 
with their confidence intervals. Last- k -years thresholds are specifically used to do a 
time series analysis of the limiting age in the 20th century. As a direct application, 
continuous mortality rates functions above the threshold can be derived from the model. 
 
1. Introduction 
 
 With the improvements in general living conditions and the advancement of 
medical technology, the average human life span in the United States has increased 
over 20 years on average during the last century. As a result, the demographic structure 
has changed significantly. In many developing countries, the fast-growing aging 
population is having more and more impact on many economic and social fields.  
 
 Modeling of general mortality and survival functions has being going on for 
centuries. The earliest one dates back to 1729, when De Moivre proposed a uniform 
distribution of time-until-death variable )(xT  on the interval from current age x  to the 
limiting ageω . Gompertz (1825) used a growing exponential function to model the 
mortality function, and Makeham (1860) modified it by adding a constant term. Weibull 
proposed a power function (1939). Even today, these models are still widely used in 
making life tables or approximations. In the latter three models, there is no upper 
bound on the survival age; the limiting age is infinite. 
 
 As a basic underlying distribution of future lifetime variable, life tables are 
popularly adopted in premium and reserve calculations and in risk management. 
However, the nature of the faster acceleration in mortality rates for the elderly 
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population makes it less accurate in the end-of-life tables. For instance, the limiting age 
ω varies from 100 to 120 in different life tables. As we seek parametric models that 
could describe this behavior, the newly developed extreme value theory emerges as a 
promising solution. 
 
2. About the Data 
 
 The data used in the analysis is from life tables of the United States during 1901–
1999 provided by the Human Life-Table Database (HLD) [5]. We mainly use the 
complete life table columns of xd  as the recorded number of deaths among the 
survivors’ group, broken down by year and sex. 
 
3. General Pareto Distribution (GPD) Model 
 
3.1 Theoretical background 
 
 With either a detailed record of survivorship group in each year or general life 
table structure, peaks-over-threshold model can be applied in an elegant manner. The 
following theorem serves as a foundation of the asymptotic conditional distribution of 
excess over high threshold. 
 
Let nXXX ,...,, 21 be a sequence of independent random variables with common 
distribution F , and let },...,max{ 1 nn XXM = . If there exist sequences of constants 

}0{ >na  and }0{ >nb  such that  
∞→→≤− naszGzabM nnn )(}/)Pr{(  

for a non-degenerated distribution function G , then G  is a member of the GEV family. 
Furthermore, for high threshold u , the conditional distribution of Y = (X – u | X > u) 
follows a Generalized Pareto Distribution (GPD) with distribution function: 

ξ

σ
ξ /1)~1(1)( −+−=
yyH                                                (1) 

defined on {y: y > 0 and 0)~/1( >+ σξy }, where )(~ µξσσ −+= u . Details of the proof can 
be found in Coles [2] and Embrechs [3]. The corresponding survival function 

ξ

σ
ξ /1)~1()(1)( −+=−=
yyHys implies a mortality function 

y
y

ξσ
ξσµ

+
= ~
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)(  whose reciprocal 

is linear in y . 
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3.2 The log-likelihood function 
 
 The life table data, which contains xd  at each age x, can be interpreted as the 
interval data, i.e., the number of observations for the age-at-death variable X on interval 
[x, x+1] is xd . Suppose the largest age in the life table is lω , then for ,0≠ξ  the log-
likelihood can be derived from equation (1): 
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 An approximation of the above log-likelihood function can be obtained using the 
probability density function of the GPD.  
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 This approximation sometimes produces a faster computational speed and an 
alternative way if the original one does not converge. 
 
3.3 Parameter estimation 
 
 To select a threshold, we need to consider a relatively high threshold for 
accuracy in the approximation as well as enough survivors to reach the threshold in the 
life table. A threshold 90=u  is selected to compute the maximum likelihood estimates 
(MLEs) of ),~( ξσ  for the survivorship group of each year during 1901–1999. As an 
illustration, for the male group in the year 1901 (we use superscript for gender and 
subscript for year to distinguish different groups), the MLEs are: 

)2535.0,8978.3()ˆ,~̂( 19011901 −=mm ξσ  
 
 The negative shape parameter ξ  indicates a Weibull distribution, which has an 
upper limit at mmmy 190119011901

ˆ/~̂ ξσ−= . Combined with the threshold, the maximum 
likelihood estimate of the limiting age m

1901ω  is  

38.105ˆ/~̂ˆ 1901190119011901 =−= mmmm u ξσω  

 The related variance-covariance matrix of )ˆ,~̂( 19011901
mm ξσ  is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
0003396.0002089.0

002089.001991.0
. Applying the delta method (see Coles [2] for details), the 

estimated variance of m
1901ω̂  is 0.55954. Therefore, a 95 percent confidence interval 

estimation of m
1901ω̂  is (103.91, 106.85).  

 
 To conduct a time series analysis of the limiting age, we need to obtain the 
estimate of the limiting age for each year between 1901 and 1999 for both male and 
female. However, a constant threshold may not be a good choice. Obviously, for a 
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constant threshold 90=u , the probability that one from the 1901 group survives to the 
age 90 is significantly smaller than one from the 1999 group. Therefore, we need to find 
ways to have thresholds such that the proportion of survivors who survive to the 
threshold is consistent throughout time. 
 
3.4 Last-k-years thresholds and linear regression of the limiting age 
 
 There are a few ways to handle the choice of thresholds. A common way is to 
add time t  in a covariate model for the thresholds: tcuut ⋅+= 0  where 0u  and c  are 
constants. The drawback is that we have to estimate one more parameter c  in our 
estimation. Also, since the threshold almost surely is no longer an integer in this setting, 
we need to convert xd  to the number of deaths in a fraction of year. 
 
 Since our data is from life tables, the largest age observed for each year group is 
relatively stable throughout time. We propose an alternative solution by using last-k-
years thresholds ku tlt −= ,ω , where 1, −tlω  is the largest age observed in year t  group. 
With this type of varying thresholds, the data used in our analysis is always the last k  
years in the life table. For instance, for the male group in 1901, the last observed age 
group is at age 10411901, =−lω . The choice of 901901 =u  is equivalent by choosing 15=k . 
After obtaining estimates for groups from each year, a simple linear regression can be 
conducted on the results of the following:   
 

For Male:       tm
t 0793.05.46 +−=ω                          For Female:   tf

t 1039.04.93 +−=ω  
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Figure 1: Simple Linear Regression Plot of Limiting Age vs. Year in GPD Model 

 
 Figure 1 gives the plots of linear regression analysis of the estimated limiting age 
by time, where blue circles stand for male and red triangles for female. The female 
group has a greater coefficient of the slope, which indicates that the increase of limiting 
age for the female group is slightly faster than the increase for the male group. 
Comparing with the annual increase of 0.18–0.30 in life expectancy, the increase in the 
limiting age is slower. However, after comparing the result with the life table, we can 
quickly find that maximum likelihood estimate of the limiting age heavily depends on 

tl ,ω . In addition, it is easy to tell from Figure 1 that the estimates from 1950 to 1999 are 
clustered at several values.  
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4. Transformed GPD Model 
 
4.1 Model and log-likelihood function 
 
 For a positive shape parameter ξ , the distribution does not have an upper bound, 
so an estimate of the limiting age is not viable. A solution can be found in Han [4] by 
using a transformed distribution. Using the hyperbolic transformation with 1=p , 

Yw
wYZ
−

=                                                             (4) 

 The distribution function for Y = )|( uXuX >−  can be obtained (see Han [4] 
page 52). 
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 With this )(yH , the mortality function 
))((
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uyuy
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ξωµ  has a quadratic 

form in its reciprocal. The corresponding log-likelihood function is 
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 The approximation using the probability density function can also be found: 
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4.2 Parameter estimation and linear regression of the limiting age 
 
 Using equation (7) and thresholds 15, −= tltu ω , we can obtain the MLEs of ( tt ξω , ) 
for each year group t = 1901, 1902, …, 1999. For instance, for the male group in 1901, 

( mm
19011901
ˆ,ˆ ξω ) = (104.8, 0.296) with variance-covariance matrix ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
0002992.000858.0

00858.03543.0
. 

Similarly, we obtain the simple linear regression for the estimated limiting age for both 
male and female: 
 

For Male:       tm
t 0797.05.47 +−=ω                     For Female:   tf

t 1054.06.96 +−=ω  
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Figure 2: SLR Plot of Limiting Age vs. Year in Transformed GPD Model 

 
 Figure 2 shows a very similar pattern as in the previous model. Still, the 
estimated limiting age is slightly larger than the last observed age, and the result is not 
satisfactory. Next, we consider the case when the shape parameter is approaching 0. 
 
5. Transformed Exponential Distribution 
 
5.1 Log-likelihood function and model interpretation  
 
 When the shape parameter 0=ξ , the generalized Pareto distribution 
degenerates to an exponential distribution with mean σ~ : 

0),~exp(1)( >−−= yyyH
σ

                                                     (8) 

 The distribution is unbounded from the right. Applying the transformation in 
equation (4), we can obtain the transformed distribution for )|( uXuXY >−= : 
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 The mortality function 2

2
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σωµ  also has a quadratic form in its 

reciprocal. The log-likelihood function then can be found from equation (6). An 
approximation can also be found by using its probability function distribution. 
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 With this model structure, the limiting age for every human being is ω . At an 
age of x , the model age can be calculated through the transformation equation (4), 

which is 
x

x
−ω
ω . If the parameter σ~  is chosen to be a constant, then the model implies 

that the distribution of the model age follows a constant force of mortality assumption 
with σµ ~/1= . After the transformation, the actual age distribution follows an 
accelerated force of mortality.  
 
5.2 Threshold selection 
 
 Parameter estimates are obtained by maximizing the log-likelihood in equation 
(9) for each year group, using the last-15-years thresholds. For instance, for the 1901 
male group, the estimates are )7952.155,3613.109()~,( 19011901 =mm σω  with variance-

covariance matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
432.1978549.10

8549.1065895.0
.  

 
 So far, all the results we have shown are drawn using the last 15 years of 
observation in the life table. However, is 15 a good choice, or can we find a better one? 
One method is to fit the model at a range of thresholds and then check the stability of 
parameter estimates. As an illustration, we pick 1901, 1950 and 1999 for the selection of 
k . We seek for k  such that the parameter estimation is stabilized. For each specific year, 
we find the MLEs of the limiting age for a range of k  from 13 to 20. The procedure finds 
the best choice of k . Results can be seen in Table 1. In Figure 3, we plot the parameter 
estimation of the limiting age by having k  range from 10 to 20. By drawing a horizontal 
line to help us to choose k , we can tell that 15=k  and 16=k  are good selections for all 
1901, 1950, 1999 data.  
 

Year / k 13 14 15 16 17 18 19 20 Selected 
k1901 109.16 109.29 109.36 109.40 109.41 109.42 109.44 109.51 17 

1950 112.56 112.64 112.68 112.71 112.73 112.73 112.73 112.72 18 

1999 113.98 113.98 113.97 113.93 113.86 113.77 113.67 113.55 14 
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TABLE 1 
Estimates of the Limiting Age by Varying k  
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Figure 3: Estimated Limiting Age by Varying Threshold u  

 
5.3 Simple linear regression of the limiting age and the limiting model age 
 
 As before, we conduct simple linear regression of those estimates. The result we 
obtain from this model does not differ greatly from the models we had before. But it is 
clear that the problem of the heavy dependence of the estimate of the limiting age upon 
the age of death of the last survivor is much less serious. 
 

For Male:       tm
t 0761.05.36 +−=ω                            For Female:   tf

t 097.05.76 +−=ω  
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Figure 4: SLR Plot of Limiting Age vs. Year in Transformed Exponential Model 

 
 Now we take a look at the parameter σ~ , which can be explained as the life 
expectancy of the model age. The result from a simple linear regression follows in 
Figure 5. It is surprising that there is a significant difference between the two slopes of 
the linear fits. The average life expectancy in the model age increases 0.157 year for 
males, and this number is almost tripled for females. 
 

For Male:       tm
t 1570.07.136~ +−=σ                     For Female:   tm

t 4447.07.682~ +−=σ  
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Figure 5: SLR Plot of Model Age vs. Year in Transformed Exponential Model 

 
5.4 Confidence interval for parameter estimation and model validation  
 
 As a simple validation of our model, consider the male group in 1901. Since the 

estimated limiting age is 109.3613, the model age for 90 is 36.508
903613.109
90*3613.109

=
−

, and 

the model age for 91 is 00.542
913613.109
91*3613.109

=
−

, with an estimated 7952.155~
1901 =
mσ . The 

estimated 901901 q̂m  is:   194.0]7952.155/)36.508542(exp[1ˆ901901 =−−−=qm . This is fairly close 
to the exact 901901 qm , 0.268, in the life table. Since we have the variance-covariance matrix, 
we can construct a confidence interval for all related functions by applying the delta 
method. Figure 6 shows an overall comparison between the estimated annual death 
rates with the observed ones in the life table. This approximation can be improved if we 
choose 18,17,16=k . 



 

 13 

 
Figure 6: Annual Death Rates Comparison in Life Table vs. in Model (1901, Male Group) 

 
Conclusion and Discussion 
 
 All the suggested models indicate the gradual increase in the limiting age for 
both male and female during the 20th century. We feel the transformed exponential 
model has the overall best fit. The male group has an annual increase of 0.08 per year in 
the limiting age versus the female group’s 0.10 per year. Yet these numbers are smaller 
than the annual increase in life expectancy.  
 
 In an earlier draft, we proposed that the transformed exponential model might 
be improved by adding an additional power p  to control the transformation. The 
proposed transformation was: 

p

Xw
wXZ ⎟

⎠
⎞

⎜
⎝
⎛

−
=                                                         (11) 

 However, the numerical results indicate that both estimates of ω  and p  would 
approach infinite; therefore, it seems redundant to add this parameter.  
 
 Theoretically, a more meaningful analysis can be conducted on the basis of well-
recorded data instead of life tables, such as fully detailed Medicare data with birth 
cohort contributes. In our analysis, we used last- k -years thresholds with fixed k  to do a 
time series study from 1901 to 1999. This method is robust in the estimation of the 
limiting age; the estimated limiting age varies slightly for a reasonable range of the 
thresholds. However, the estimation of the model age varies significantly for different 
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selection of thresholds. Therefore, we would monitor the estimation of the limiting age 
to select the optimal k  in case our goal is to fit the best model to a specific data set. 
 
Acknowledgements 
 
 I gratefully thank Dr. S.G. Coles for providing the s-plus codes together with the 
wonderful book. I am also grateful to the Human Life-Table Database (HLD), which 
provides life tables free of charge to all interested users. Last but not least, I would like 
to thank T. P. Edwards and the anonymous editor for their valuable comments and 
suggestions. 
 
 



 

 15 

References 
 
[1] Bowers, Gerber, Hickman, Jones, Nesbitt (1997). Actuarial Mathematics, Second Edition. 
Society of Actuaries, Michigan.  
 
[2] Coles, S.G. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-
Verlag, London. 74–91. 
 
[3] Embrechs, P., Kluppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for 
Insurance and Finance. Springer, Berlin.  
 
[4] Han, Z. (2003). "Actuarial Modeling of Extremal Events Using Transformed 
Generalized Extreme Value Distribution and Transformed Generalized Pareto 
Distribution," Ph.D. thesis, The Ohio State University.  
  
[5] The Human Life-Table Database (HLD) at http://www.lifetable.de. 
 
 
 


