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Abstract 

Mapping of incidence rates or mortality rates (relative risks) from diseases like cancer and 
leukemia is of primary importance in an epidemiological study. The usual procedure is to map 
the standardized mortality ratio (SMR) across different geographical regions. Direct use of SMR 
may not be worthwhile, particularly for small places, as it does not take into account the high 
variability for different population sizes over different regions and the spatial patterns of the 
regions under study. In this paper a hierarchical Bayes approach is presented in smoothing the 
relative risks and providing the measures of uncertainty associated with these estimates of relative 
risks. (~) 1998 Elsevier Science B.V. All rights reserved. 
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I. Introduction 

One of  the primary tools of  an epidemiological study is mapping of  incidence or 

mortality rates from diseases like cancer. Mapping of  relative risks over the different 

geographical regions helps to have an idea of  environmental determinants of  a specific 

disease. As mentioned by Clayton and Kaldor (1987), the basic problem of  mapping is 

the choice of  an appropriate measure o f  relative risks. The inappropriateness o f  direct 

use o f  standardized mortality ratio (SMR) is discussed in Wallin (1984), Clayton and 

Kaldor (1987), Tsutakawa et al. (1985), Tsutakawa (1988), Cressie and Chan (1989) 
and Cressie (1992). The SMR suffers from high variability due to unequal bases from 

region to region. The crude estimates o f  relative risks for small areas are subject to 

large chance fluctuations due to lower level o f  aggregation o f  samples in the population. 
Tsutakawa (1988) and Manton et al. (1989) mentioned the adjustment of  relative risks 
for small-area populations. 
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Most of the statistical techniques for smoothing the relative risks use empirical Bayes 
(EB) method. The basic idea from Efron and Morris (1975) is pooling the information 
across the regions through a suitable model using James-Stein (1961) estimators. In 
the EB approach, the posterior distributions of the parameters of interest given the data 
are first obtained assuming the model parameters are known. The model parameters 
are then estimated by suitable methods and inferences are made from the estimated 
posterior distributions (see Morris, 1983). Clayton and Kaldor (1987) and Manton 
et al. (1989) use Poisson likelihood and gamma prior for the parameters. Tsutakawa 
(1988) uses Poisson-gamma model with an additional random effect term in the mixed 
linear model. Clayton and Kaldor (1987) also propose non-parametric prior distribution 
which would be estimated by Laird's (1978) maximum likelihood approach. Cressie 
and Chan (1989) and Cressie (1992) use Gaussian model for both likelihood and prior 
to produce EB estimates of relative risks. Clayton and Kaldor (1987), Cressie and 
Read (1989) and Marshall (1991) consider the spatial patterns of regional data. One 
major problem of the EB approach is its failure to take into account a measure of 
uncertainty of the estimates. The estimated posterior variance does not take care of the 
extra variability due to estimation of the model parameters. 

In the present article we consider hierarchical Bayes (HB) approach for estimating 
relative risks along with their measure of uncertainties. In the HB approach, together 
with the prior distributions of the parameters, suitable prior for the hyperparameters 
(or model parameters) are proposed and then inferences are made from the posterior 
distributions. In particular, a parameter is estimated by its posterior mean and its pos- 
terior variance is taken as the measure of error of the estimate. The HB method is easy 
to understand but often involves high-dimensional integration. We use Gibbs sampling 
in finding out the posterior densities. 

The subsequent sections are as follows. In Section (2) we consider two hierarchical 
Bayes models and list the corresponding full conditional distributions required to carry 
out the Gibbs sampling. In Section (3) the HB methodology is illustrated by using the 
example of lip cancer data given in Clayton and Kaldor (1987). Concluding remarks 
are given in Section (4). HB analysis is often pursued with improper prior for the 
hyperparameters. This may lead to improper posterior distribution. In the appendix 
we establish the propriety of the posterior distribution corresponding to an improper 
hyperprior distribution. 

2. Hierarchical Bayes modeling for relative risk estimation 

In this section we consider two different modeling approaches as considered in 
Clayton and Kaldor (1987), Manton et al. (1989), Cressie and Chan (1989) and 
Cressie (1992). First, we consider Poisson likelihood, log-normal prior and then we 
consider spatial modeling of log-relative risks. For both cases we use proper but vague 
prior. 
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2.1. Poisson log-normal model 

Suppose there are D regions under consideration. The regions may be counties or dis- 

tricts. Let Oi be the relative risk (incidence rate) o f  a disease for area i (i = 1 . . . . .  D).  
The problem is to find a suitable estimate for Oi ( i =  1 . . . . .  D)  and the measure of  
error o f  the estimate. Let yi denote the observed number of  incidence in region i 
(i = 1 . . . . .  D)  which is usually observed over a number of  years. Let Ei be the num- 
ber of  persons-years at risk in area i ( i =  1 . . . . .  D).  A crude measure of  relative risk 

like SMR is defined as xi =yi/Ei for i =  1 . . . . .  D. Though Ei's are estimated from 
age-specific death rates, in the present context we consider that Ei's are known. Let, 

conditional on Oi, y i ' s  be independent Poisson random variables with parameter (OiEi) 
and fli's are independent and identical (iid) normal variables with mean # and variance 

r -1 where fli--log0i. Manton et al. (1989) considered gamma distributions for Otis 
( i =  1 . . . . .  D).  To find out the empirical Bayes estimates Clayton and Kaldor (1987), 
Manton et al. (1989), Marshall (1991) and Cressie (1992) suggested various methods 
of  estimation of  the hyperparameters. Lahiri and Maiti (1996) propose the optimal esti- 
mating function approach. Marshall (1991 ) discussed the difficulties arising in iterative 
methods of  estimation and proposed non-iterative ANOVA-type estimates for the prior 
mean and variance. Another shortcoming of  EB approach is that the measure of  uncer- 
tainty of  the EB estimate based on the estimated posterior distribution underestimates 

the true measure as the naive EB approach fails to account for the uncertainty due to 
estimating the model parameters. 

To avoid the difficulties that arise in EB approach, one may adopt the HB approach 
at the cost o f  some extra computation. In standard hierarchical Bayesian analysis, in 

the absence of  any subjective prior, improper non-informative priors are used for the 
hyperparameters which may lead to improper posterior distributions. For choice of  
non-informative priors, see Berger (1985). For data analysis we consider proper, but 
vague, prior for the hyperparameters as considered by Arora and Lahiri (1996). We 

use the hierarchical models as follows. 
Model MI: 

( I )  yi[Oi ~,~ Poisson (OiEi); independently, i =  1 . . . . .  D; 
ind~ ~ --1 

(II)  logOi](l~,r)~±'qt#,r ), i = 1  . . . . .  D; 
(III)  Marginally /~ and r are independently distributed with/~ ~ Uniform ( - ~ ,  + . 2 ) ,  

r ~ Gamma(a/2,b/2), a > 0, b > 0, 

where a random variable x is said to have Gamma(n,  p )  distribution if  it has the p.d.f 

pn 
f ( x )  = F - ~ e x p ( - p x ) x n - l ,  x > 0. 

Instead of  a proper gamma prior for r one may use a diffused prior (see Datta and 
Ghosh, 1991). We assume both a and b are known. Our objective is to use the posterior 
distribution of  0i 's  given the observations y~, i = 1 . . . . .  D to make inference about these 
parameters. I f  there is any covariate available in the data, one could easily incorporate 
it in modeling of  Oi's (see Ghosh et al., 1997). 
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The posterior distributions involve high-dimensional integration. To overcome this 
problem we use Gibbs sampling (see Geman and Geman, 1984; Gelfand and Smith, 
1990). We estimate the posterior distributions using multiple-path iterative sampling, 
recommended by Gelman and Rubin (1992) as it provides a measure (potential scale 
reduction) to check the convergence of Gibbs sampling. We generate m(~>2) inde- 
pendent parallel chains, each of length 2t with starting values from an overdispersed 
distribution. Then we remove the first t iterated observations from each of the m chains 
to elliminate the effects of initial choices. From the remaining t iterated observations we 
find the posterior means and variances and the criterion of monitoring the convergence 
of Gibbs sampling. 

We now write down the full-conditional distributions to implement the Gibbs sam- 
piing. 

(i) [Oi[(Y,r,#)] o~ Oy~-lexp[-OiEi  - ~(log0i - #)2], i =  1 . . . . .  D, 

(ii) #1(0, Y, r) ,,~ N(~- )-~= 1 log 0i, (Dr) -1 ), 

(iii) r[(O, Y, # )  ~ Gamma[l(D + a), ½ {~i°= l(lOg 0~ - #)2 + b}]. 

The conditional distribution (i) is known only upto a multiplicative constant. Though 
the generation of samples are easy for the distributions (ii) and (iii), generation of 
samples from (i) needs special effort. One cannot use the adaptive rejection sampling 
of Gilks and Wild (1992) as the distribution (i) is not log-concave. This situation 
is handled by Metropolis-Hastings algorithm recommended by Chib and Greenberg 
(1995). Metropolis-Hastings was originally developed by Metropolis et  al. (1953) and 
was generalized by Hastings (1970). We assume that at least one Yi is strictly positive 
so that the posterior distribution corresponding to improper prior for # is proper (proof 
is in the appendix). 

2.2. Loo -norma l  mode l  with spat ial  effect 

In this section we consider the conditional autoregression (CAR) model for the 
log-relative risks (see Clayton and Kaldor, 1987). Cressie and Chan (1989) use 
Gaussian modeling with random Markov field property. Let Si denote the set of neigh- 
bourhood areas of area i (i = 1 . . . . .  D). Recall f l i  = log 0 i (i = 1 . . . .  ,D). The CAR model 
is defined as 

E ( # i l 3 j , j  c Si) = #~ + ~ Cohi (3 j ) ,  i =- 1 . . . . .  D. 
jESj 

Here #i's are large-scale variation and Cij 's  j c Si are small-scale variation of spatial 
dependence model (see Cressie and Chan, 1989). We take # i = - g  ( i =  1 . . . . .  D) and 
C - - ( ( C i j ) ) = p W = p ( ( W i j ) ) .  Here W is the adjacency matrix of the map and Wij's  
depend on the location of ith region (i = 1 . . . . .  D). Consequently, Cij = Cji, C 0 = 0 for 
j q~ Si in our model. We also define Cii=O.  Cressie and Chart (1989) have made 
some general assumptions about C. Let h i ( f l j ) =  flj - # and Var( f l i l f l j , j  E Si) = v -~.  
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L e t  (J.max) -1  denote the maximum value of p in the CAR model. Then we assume the 
following hierarchical model. 

Model  MII: 
(I) yilOi ~ Poisson(OiEi), independently, i = 1, . . . ,D;  

(II) [3ilflj,j E Si, p,v  ~ N[# + p ~j~s,([3j - #) ,v- l ] ,  i =  1 . . . . .  D. 
(III) p ,#  and v are mutually independently distributed, respectively, with p ~ U(0, 

1/}~max) , # ~ Uniform (-¢x~,+oo) and v ~ Gamma(g,h) ,g  > 0,h > 0. 
We assume both g and h are known. Here also we have used non-informative prior. 

As in Section (2.1) we use Gibbs sampling to obtain the posterior distribution of 
Oi, i =  1 . . . . .  D. The full conditional distributions are as follows: 

(i) [0i[(Y, v , # , p ,  Oj,j E Si)] ~ OY'-lexp[--OiEi-  ~(log 0 i -  Ai# - -B i )2 ] ,  i =  1 . . . . .  D, 

(ii) #](O,Y ,v ,p )~N(~-~ ' - 'A i ( l °gOi-Bi )  (v~D=IA2) - 1 )  

(iii) v](0, Y, #, p) ~ Gamma[½(D + a), ½{E~= 1 (log Oi - Alp - Bi) z + b}], 

{ y']~;= ,,a, tr  ~_,o ) ,  (iv) Pl(0, Y,#,v) ~ TN ~ V" o k~ " ~ /=~  k2)-1 
~ Z_...,¢i = 1 i 

where TN denotes the truncated normal distribution. The posterior distribution (iv) 

is truncated outside the range (0, 1/2max). Ai = 1 - P ~ j ~ s ~  Wij, Bi = P ~ j E S ,  Wij log 0j, 
d i = log Oi-# ,  ki = ~-~jE.Si Wijdj"  In this case also the posterior distribution (i) is known 
only upto a multiplicative constant. The conditional distribution (i) is not log-concave. 
So, we use the Metropolis-Hastings algorithm to generate samples from (i). The pos- 
terior distributions are proper, assuming at least one Yi is strictly positive. 

3. An illustration with lip cancer data 

In this section a HB analysis is carried out in the example of Clayton and Kaldor 
(1987). The observed (y)  and the expected (E) number of cases of lip cancer registered 
during the six years period (1975-1980) for each of 56 counties of Scotland are given. 
We consider the first 54 counties as we obtain the 'expected' number of incidence Ei 
for ith county using the relation Ei = yi/xi, i = 1 . . . . .  D, where xi denotes the SMR for 
county i, i = 1 . . . . .  D. Here xi's are multiplied by 100. The y i ' s  are zero for the last 
two counties. We exclude those counties as Ei's become zero. The adjacency matrix 
W is obtained from the last column of Table 1 of Clayton and Kaldor (1987). Our 
data analysis is presented in Table 1 below. The Table 1, column 4 corresponds to the 
estimates from Model MI and column 5 corresponds to the estimates from Model MII. 
The standard errors (s.e.) of the estimates are given in columns 6 and 7, respectively, 
for Model MI and Model MII. 

To implement the Gibbs sampler of Gelman and Rubin (1992), we consider m -- 10 
independent sequences each of length 2t = 200. The convergence of Gibbs sampler is 
assessed by using the potential scale reduction of Gelman and Rubin (1992) which 
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Table 1 
Hierarchical Bayes estimates of  lip cancer incidence in Scotland by county 

County y x HB estimate Standard error Adjacent counties 

MI MII MI MII 

1 9 652.2 458.3 413.3 163.0 137.9 5,9,11,19 
2 39 450.3 424.6 404.7 70.1 66.2 7,10 
3 11 361.8 303.0 292.0 92.6 81.9 6,12 
4 9 355.7 285.9 256.1 96.8 75.6 18,20,28 
5 15 352.1 304.6 314.5 80.9 83.7 1,11,12,13,19 
6 8 333.3 270.4 269.2 96.1 81.2 3,8 
7 26 320.6 302.5 301.5 56.7 58.0 2,10,13,16,17 
8 7 304.3 249.3 238.2 92.0 72.9 6 
9 6 303.0 239.1 254.1 92.1 86.9 1,11,17,19,23,29 

10' 20 301.7 275.6 277.8 61.8 59.3 2,7,16,22 
11 13 295.5 259.4 278.8 70.3 70.3 1,5,9,12 
12 5 279.3 225.4 259.4 93.3 86.7 3,5,11 
13 3 277.8 201.3 245.0 105.9 91.2 5,7,17,19 
14 8 241.7 216.3 189.2 75.1 54.9 31,32,35 
15 17 216.8 202.6 189.9 45.9 44.2 25,29,50 
16 9 197.8 180.5 194.5 58.8 50.0 7,10,17,21,22,29 
17 2 186.9 161.6 209.7 84.5 76.6 7,9,13,16,19,29 
18 7 167.5 156.5 164.5 55.0 47.5 4,20,28,33,55,56 
19 9 162.7 152.8 190.7 47.1 48.0 1,5,9,13,17 
20 7 157.7 149.2 166.6 52.0 45.0 4,18,55 
21 16 153.0 147.0 148.9 34.6 32.4 16,29,50 
22 31 136.7 136.0 142.3 22.8 22.7 10,16 
23 11 125.4 125.7 118.2 34.8 31.9 9,29,34,36,37,39 
24 7 124.6 126.9 100.2 42.8 31.2 27,30,31,44,47,48,55,56 
25 19 122.8 122.7 127.7 28.2 24.4 15,26,29 
26 15 120.1 119.7 118.5 29.4 26.6 25,29,42,43 
27 7 115.9 118.6 123.8 39.5 35.1 24,31,32,55 
28 10 111.6 115.4 121.4 33.9 31.9 4,18,33,45 
29 16 111.3 111.5 109.0 27.3 24.9 9,15,16,17,21,23,25,26,34,43,50 
30 11 107.8 110.2 95.1 29.8 25.1 24,38,42,44,45,56 
31 5 105.3 111.4 96.8 43.1 33.6 14,24,27,32,35,46,47 
32 3 104.2 110.7 123.7 49.6 43.9 14,27,31,35 
33 7 99.6 101.7 112.2 31.9 31.2 18,28,45,56 
34 8 93.8 99.3 71.2 31.8 22.4 23,29,39,40,42,43,51,52,54 
35 11 89.3 92.8 94.8 25.3 22.7 14,31,32,37,46 
36 9 89.1 94.3 93.4 27.8 24.3 23,37,39,41 
37 11 86.8 89.4 89.0 23.5 22.3 23,35,36,41,46 
38 8 85.6 91.1 80.6 28.9 23.1 30,42,44,49,51,54 
39 6 83.3 91.3 86.2 30.4 26.7 23,34,36,40,41 
40 4 75.9 87.0 73.6 32.8 25.1 34,39,41,49,52 
41 10 53.3 59.6 55.0 15.1 14.2 36,37,39,40,46,49,53 
42 8 50.7 59.7 60.9 17.0 15.9 26,30,34,38,43,51 
43 2 46.3 74.7 84.2 34.6 30.0 26,29,34,42 
44 6 41.0 51.3 54.6 16.9 14.1 24,30,38,48,49 
45 19 37.5 42.3 47.9 9.1 9.5 28,30,33,56 
46 3 36.6 52.1 55.8 19.6 18.0 31,35,37,41,47,53 
47 2 35.8 62.2 52.0 27.0 18.6 24,31,46,48,49,53 
48 3 32.1 50.1 52.8 19.0 17.0 24,44,47,49 
49 28 31.6 34.2 32.1 6.4 5.8 38,40,41,44,47,48,52,53,54 
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Table 1. (Continued) 
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County y x HB estimate Standard error Adjacent counties 

MI MII MI MII 

50 6 30.6 42.5 58.2 13.8 15.7 15,21,29 
51 1 29.1 65.7 67.6 37.6 2 4 . 0  34,38,42,54 
52 1 27.6 64.5 60.9 37.1 2 5 . 5  34,40,49,54 
53 I 17.4 51.5 53.9 28.3 2 0 . 5  41,46,47,49 
54 1 14.2 50.8 48.3 22.1 1 7 . 9  34,38,49,51,52 

Note: The reported standard errors are scale transformed. 

is near unity for all the scalar estimands. The procedure is not sensitive to the initial 

choices o f  the parameters. 

The estimates o f  Oi's (i = 1 . . . . .  D )  are very similar for both the models. The disper- 

sions among the estimates are slightly larger than those for the EB estimates. We use 

(2max) -1 = 0.175 which is the maximum value o f  p in a CAR process (see Clayton and 

Kaldor, 1987). In our case the estimate o f  p comes out as 0.164. The spatial effects 

are reflected from the estimates o f  some of  the counties e.g., the counties 24, 30, 31 

are affected by several low-risk areas while the counties 17, 32 and 33 are affected by 

several high-risk areas. 

The standard errors o f  the estimates for Model II are smaller than those for Model I. 

This is because Model II exploits the spatial structure of  the data. For the counties 

1, 13, 17, 32, 43, 46, 47, 48, 51, 52, 53, and 54 the standard errors are high due to 

insufficient representation o f  obsereved number o f  incidences. However, the counties 2, 

7, 22, 45, and 49 have small standard errors due to availability o f  more information. 
The values of  the potential scale reduction o f  Gelman and Rubin (1992) are close 

to unity for all the scalar estimands. 

4. Concluding remarks 

This paper presents the HB estimation procedure for an ensemble of  parameters 
related to mapping of  relative risks across several non-overlapping regions. We have 

used non-informative priors for hyperparameters but one could also use informative 

priors to incorporate prior information of  the hyperparameters, if available. In the EB 

method if one uses the estimated posterior variance as a measure o f  uncertainty for the 

estimate, it leads to severe underestimation of  the true posterior variance since it does 
not take into account the uncertainty involved in the estimation of  mean and variance 

of  prior parameters (see Berger 1985; Prasad and Rao, 1990; Lahiri and Rao, 1995). 
Unlike the EB method, the HB method accounts for this uncertainty by assigning the 

distributions o f  prior parameters. Moreover, the HB approach provides standard errors 
along with the point estimates (see Ghosh et al., 1998). 
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Though a number of models have been suggested in the literature, we have consid- 
ered only two of them to demonstrate the HB method in estimating relative risks and 
the measures of uncertainty of the estimates. 
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Appendix 

We will show that the joint posterior distribution of the parameters is proper. We 
have to show that [(_0, # , r ) /y]  is integrable. 

Case I: Yi > 0 for all i. Let ui--log0/,  i =  1 . . . . .  D. 
Then we have 

[(U, #,/')/y] (X exp {-- E L  1( E/eu' - yiu,)}  

x e x p { - ~ ( ~ = l ( U i - - # ) 2 + b ) } r  ((D+a)/2)-I 

f ... f exp{-~=l(E~e u'- yiui)} 
×exp {--~ ( ~?=l(Ui - #)2 -b b) }r((D+a'/2)-l drd#I-I dui 

=const. f "" f exp{-~z/=,(Eie ui- yiui)} 
×exp {-~ ( ~Z~=l(Ui - a)2 + b) }r(Z~+~-l)/2 drI-[ dui 

=const. f ... f exp{-Ff=l(EieU'- yiui)} 

x D u if)2} -(D+~+O/2 {b-1-~-~4 = 1( i - -  1-Idui 

assuming a + D > 0, b > 0. 
Now, for Yi )" O, 

exp(yiui - Eie ui) < exp(-cu~) for large ui > O,c > 0 

and 

exp(yiui - Eie u') < exp(yiui) for small ui < O. 

Then it follows that the posterior is proper. 
Case II: At least one Yi is strictly positive. 
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Assume p of  the yi's are strictly positive and without loss of  generality let Yl > 0 . . . . .  
yp > 0. T h e n  w e  h a v e  

f "" f [(o_,p,r)/y]drd#l-IdOi 

/ /01 {eXp(-OiEi)Oy'-IeXp{- P O( . . .  ~ ( l ogOi  -- #)2}rl/2} [I dOi 
i i=1  / / °  ° x ... ~I {exp(-OiEi)Oy'-'exp{-~(logOi- #)2}rr/2} 1-[ dOi 

i = p + l  i = p + l  

x e x p ( -  O~ )ra/2-1 d# dr. 

N o w ,  

f f° "'" r-[ {exp(-OiEi)OYg-lexp{-~(logOi- #)2} rr/2} H dOi 
i = p + l  i = p + l  

f <~ "'" rI {O[-lexp{-~(logOi - #)2} r'/2} 1-I dOi 
i = p + l  i = p + l  

= (2~)(D--P)/2 

So,  

- - .  f [ (_O,  p,  r)/y] dr dpI ] dOi 

<~ (2~) (D-p)~2 

S i Ol {eXp(-OiEi)O -I P x . . .  Y' e x p { - ~ ( l o g 0 i  - p ) 2 } r V 2 }  I ]  dog 
i i=1  

× e x p ( -  -~ )r a/2-1 d# dr 

< oc (Follows from case I). 
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