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Abstract

Data gathered in surveys often are used to estimate characteristics for subsets of the survey
population. If the sample from a subset is small, then a traditional design-based survey estimator
may have unacceptably large variance. Small-area estimation reduces the variance of estimators
by “borrowing strength” across subsets. Here we compare estimators based on two models, one
that uses simple geographic clustering and demographic data and one that uses more elaborate
covariate information that relates subsets to one another. Data are from a survey conducted by
the Gallup Organization. The methods incorporate survey weight information and are appropriate
for rare events. Empirical Bayes estimation techniques are used. Covariates for the second model
are selected in a step-wise manner until addition of another covariate does not yield a decrease
in an objective criterion.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Data gathered in surveys often are used to estimate characteristics of subsets (also
called subpopulations or domains) of the survey population. If the sample from a subset
is small, then a traditional design-based survey estimator may have unacceptably high
variability. The Gallup Organization has conducted telephone household surveys to
study the prevalence of alcohol and drug use in various states. State administrators
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would like to have estimates of prevalence within counties. However, sample sizes
often are planned and budgets allocated for producing accurate estimates in larger
administrative regions.

Small-area estimation methods can be used to reduce the variance of estimators
by “borrowing strength” across subsets. Although simple synthetic estimators tend to
produce very stable estimates, they do not necessarily reCect observed diDerences in
subsets of the population, even when sample sizes are not so small. Some composite
estimators combine the direct and synthetic estimators, but in an arguably arbitrary
manner.

Here we compare estimators based on two models, one that uses simple geographic
clustering and demographic data (the model of Chattopadhyay et al., 1999) and an
extension that uses more elaborate county-level covariate information. The methods
incorporate survey weight information and are appropriate when trying to estimate the
rate of occurrence of a rare event. Empirical Bayes estimation techniques (see, e.g.,
Efron and Morris, 1973; Fay and Herriot, 1979; Ghosh and Lahiri, 1987) are used.
A procedure similar to step-wise variable selection in linear regression and using an
objective criterion is used to choose covariates in the second model.

Small-area estimation methods are reviewed in Ghosh and Rao (1994). Malec et al.
(1999), extending Malec et al. (1997) to account for unequal selection probabilities,
specify a Bayesian hierarchical model that includes a logistic regression model for
expected proportions. Farrell et al. (1997) use empirical Bayes procedures to estimate
logistic regression parameters related to expected small area proportions in their model.
Other recent work in small area estimation includes development of methods for spatial
and temporal modeling of counts (see, e.g., WakeHeld and Elliott, 1999) and means
of quantitative variables through nested error regression models (see, e.g., Singh et al.,
1998).

Section 2 presents notation and some estimators of small-area proportions. Section 3
speciHes two models and estimators. It also discusses estimation of parameters, mean
square error, and, for the second model, variable selection. Section 4 describes the
Gallup Organization survey and displays results using various estimators. Section 5 is
a conclusion.

2. Notation and basic estimators

The notation here follows that of Chattopadhyay et al. (1999) and is designed based
on a Gallup Organization telephone survey of one adult per sample household. The
households are located in counties, which are grouped into planning regions in a state.
Let ni be the sample size in the ith planning region, i=1; : : : ; I (n=

∑I
i=1 ni). Suppose

there are Ji counties in the ith planning region (i = 1; : : : ; I). The samples in each
region are post-stratiHed according to K demographic groups. There are nijk observa-
tions within the kth demographic group in the jth county belonging to the ith planning
region (i= 1; : : : ; I ; j= 1; : : : ; Ji; k= 1; : : : ; K). Let Sij indicate the demographic groups
from which individuals have completed surveys in the jth county within the ith region
(i = 1; : : : ; I ; j = 1; : : : ; Ji). That is, k ∈ Sij if nijk ¿ 0.
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The response (0 or 1) from the lth person from the kth demographic group in the
jth county in the ith planning region (i= 1; : : : ; I ; j= 1; : : : ; Ji; k ∈ Sij; l= 1; : : : ; nijk)
is denoted by yijkl. The survey sampling weight for this person is wijkl. A vector of
covariates x′ij=(xij1; : : : ; xijp) is measured in county j. The proportion of the population
from census estimates at the time of the survey in the kth demographic group is aijk .
A parameter of interest is �ij, the proportion of the jth county within the ith planning
area (i = 1; : : : ; I ; j = 1; : : : ; Ji) with a certain characteristic.

As in Chattopadhyay et al. (1999), the direct estimator of �ij is

�̂ij
D =

∑
k∈Sij

∑nijk
l=1 wijklyijkl∑

k∈Sij
∑nijk

l=1 wijkl
=

∑
k∈Sij (

∑nijk
l=1 wijkl)�̂ijk

D

∑
k∈Sij (

∑nijk
l=1 wijkl)

;

where �̂ijk
D is the direct estimator of the prevalence in the kth demographic group in

the jth county in the ith area. A synthetic estimator that implicitly assumes proportions
for demographic groups are the same within counties in a planning region is �̂ij

S =∑
k∈Sij aijk �̂ik

D, where �̂ik
D is a direct survey estimator of �ik , the prevalence in the

kth demographic group in the ith planning region. A composite estimator is �̂ij
C =∑

k∈Sij aijk �̂ijk
D +

∑
k �∈Sij aijk �̂ik

D in which the prevalence in the kth demographic group

in the jth county in the ith region is estimated directly (�̂ijk
D) if possible and by the

region-wide estimate if necessary (�̂ik
D). This estimator does not necessarily produce

estimates between �̂ij
D and �̂ij

S. See Chattopadhyay et al. (1999) for discussion of
these estimators.

3. Empirical Bayes estimators

The above estimators make strict choices about the use of direct versus pooled
estimators and correspond to implicit models. In order to motivate estimators that make
a more subtle compromise between alternatives, models are proposed below. The Hrst
model was originally presented in Chattopadhyay et al. (1999), and the second model
is an extension that incorporates county-level covariate information.

3.1. Model 1 (Chattopadhyay et al., 1999)

A. Given the �ijk ’s, the yijkl’s are uncorrelated Bernoulli random variables with para-
meter �ijk for i = 1; : : : ; I ; j = 1; : : : ; Ji; k = 1; : : : ; K ; l= 1; : : : ; nijk .

B. Marginally, the �ijk ’s are uncorrelated with E(�ijk) = �ik ; Var(�ijk) = d�2
ik (i =

1; : : : ; I ; j = 1; : : : ; Ji; k = 1; : : : ; K).

In Model 1, the proportions in demographic groups can vary across counties in a region.
In our application, we set d = 1

3 , which would be the value of d is the distribution
of �ijk were Uniform(0; 2�ik). The uniform prior distribution would imply that the
proportions �ijk are of similar small value in demographic group k across counties j
within region i.
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Chattopadhyay et al. (1999) empirical Bayes estimator �̂ij
EB1 of �ij is

∑
k∈Sij

×aijk(B̂ijk �̂ijkD + (1 − B̂ijk)�̂ik) +
∑

k �∈Sij aijk �̂ik , where B̂ijk = d�̂ik
2=(d�̂ik

2 + cijk(�̂ik −
(d + 1)�̂ik

2)); cijk =
∑nijk

l=1 w
2
ijkl=(

∑nijk
l=1 wijkl)

2, and �̂ik = �̂ik
D. The mean squared error

(MSE) of the empirical Bayes estimator �̂ij
EB1 is derived and a jackknife estimation

strategy is developed and applied in Chattopadhyay et al. (1999).
Model 1 reCects a clustering of counties by region. The model and data guide the

level of compromise between direct and synthetic estimators in each demographic group
in each county in each region. Model 2 below uses additional covariate information to
guide the compromise between direct and synthetic estimators.

3.2. Model 2

A. Conditional on �ijk ; yijkl’s are uncorrelated Bernoulli random variables with
parameter �ijk for i = 1; : : : ; I ; j = 1; : : : ; Ji; k = 1; : : : ; K ; l= 1; : : : ; nijk .

B. Marginally, �ijk ’s are uncorrelated with E(�ijk) = (exp(�ik + x′ij�))=(1 + exp(�ik +
x′ij�)) = �ijk(�ik ; �) = �ijk , say, and Var(�ijk) = d�2

ijk .

In Model 2, �ik is the eDect due to the kth demographic group in the ith planning area
and �′=(�1; : : : ; �p) is a vector of regression coeLcients. In absence of any covariates,
Model 2 reduces to Model 1.

According to Model 2, given �ijk , the �̂ijk
D’s are mutually independent, E(�̂ijk

D|�ijk)=
�ijk , and Var(�̂ijk

D|�ijk) = cijk�ijk(1−�ijk) for i= 1; : : : ; I; j= 1; : : : ; Ji; k = 1; : : : ; K . The
linear Bayes (see, e.g., Hartigan, 1969) estimator of �ij, under Model 2 and a squared

error loss function, is �̂B2
ij =

∑
k∈Sij aijk(Bijk �̂ijk

D +(1−Bijk)�ijk)+
∑

k �∈Sij aijk�ijk , where
Bijk = d�2

ijk =(d�
2
ijk + cijk(�ijk − (d+ 1)�2

ijk)). When k ∈ Sij, the proportion �ijk is esti-
mated by a weighted combination of the direct survey estimator and an estimator that
involves the covariate information through �ijk .

Since limited assumptions about the prior distribution of �ijk and no distributional
assumptions about � and �ik were made, a criterion is proposed here for determining
values to use in place of � and �ik . Under Model 2, with respect to the unconditional
distribution determined by both parts of the model, E(�̂ijk

D) = �ijk(�ik ; �) = �ijk and
Var(�̂ijk

D) = d�2
ijk + cijk(�ijk − (d+ 1)�2

ijk). The criterion

Q(�ik ; �) =
∑
i; j

(�̂ij
D −∑

k aijk�ijk)
2∑

k a
2
ijk [d�

2
ijk + cijk(�ijk − (d+ 1)�2

ijk)]

is like a sum of standardized squared residuals. The values �̂ik and �̂ that minimize
Q(�ik ; �) with respect to �ik and � will be used as estimates of �ik and �. An em-
pirical Bayes estimator of �ij then is �̂ij

EB2 =
∑

k∈Sij aijk(B̂ijk �̂ijk
D + (1 − B̂ijk)�̂ijk) +∑

k �∈Sij aijk �̂ijk , where �̂ijk = �ijk(�̂ik ; �̂) and B̂ijk = Bijk(�̂ijk).
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3.3. MSE of the estimator

The mean square error (MSE) of the estimator �̂ij
B2 can be derived following argu-

ments used in Chattopadhyay et al. (1999). It can shown that with respect to Model
2 that E(�̂ij

B2) =
∑

k∈Sij aijk�ijk +
∑

k �∈Sij aijk�ijk = E(�ij), where �ij =
∑K

k=1 aijk�ijk .

Furthermore, Var(�̂ij
B2) =

∑
k∈Sij a

2
ijkBijkd�

2
ijk = Cov(�̂ij

B2; �ij). Thus, it follows that

MSE(�̂ij
B2) = E(�̂ij

B2 − �ij)2

= Var(�̂ij
B2) + Var(�ij) − 2Cov(�̂ij

B2; �ij)

= Var(�ij) − Var(�̂ij
B2)

= d


∑
k∈Sij

a2
ijk(1 − Bijk)�2

ijk +
∑
k �∈Sij

a2
ijk�

2
ijk


 :

If estimates of unknown parameters are plugged into the formula above, it will
tend to underestimate MSE(�̂ij

EB2). The uncertainty due to estimation of the unknown
parameters (�ik and �) must be taken into account (see, e.g., Prasad and Rao, 1990;
and Lahiri and Rao, 1995). One way to include the uncertainty due to estimation of
�ik and � is through the formula MSE(�̂ij

EB2) = MSE(�̂ij
B2) + E(�̂ij

EB2 − �̂ijB2)2.
An estimator of MSE(�̂ij

EB2) is given by

mse(�̂ij
EB2) = mseJ (�̂ij

B2) + EJ (�̂ij
EB2 − �̂ijB2)2; (1)

where mseJ (�̂ij
B2) = d(

∑
k∈Sij a

2
ijk(1 − B̂ijk)�̂ijk

2 +
∑

k �∈Sij a
2
ijk �̂ijk

2) − (Ji − 1)=Ji

×∑Ji
u=1(mse(−u)(�̂ij

B2)−mse(�̂ij
B2)) and EJ (�̂ij

EB2 − �̂ijB2)2 = Ji−1
Ji

∑Ji
u=1( [�ij(−u)

EB2 −
�̂ij

EB2)2. The calculation of the two terms, mseJ (�̂ij
B2) and EJ (�̂ij

EB2 − �̂ijB2)2, is ac-
complished by leaving out each county one-by-one and reestimating �ik and �. In the
above,

[�ij(−u)
EB2 =

∑
k∈Sij

a2
ijk( [Bijk(−u)�̂ijkD + (1 − [Bijk(−u)) [�ijk(−u)) +

∑
k �∈Sij

aijk [�ijk(−u)

and

mse(−u)(�̂ij
B2) = d


∑
k∈Sij

a2
ijk(1 − [Bijk(−u)) [�ijk(−u)

2 +
∑
k �∈Sij

a2
ijk [�ijk(−u)

2


 ;

where [�ijk(−u) is obtained as is �̂ijk except that the uth county is deleted and [Bijk(−u) =
Bijk( [�ijk(−u)).

Shao and Tu (1995) provide a review of the Jackknife. Jiang et al. (1998) provide
justiHcation for these estimates of the MSE of �̂ij

EB2.
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3.4. Selection of covariates for Model 2

Typically there are many covariates available on the counties. For models with a
given number of covariates, here we choose the set of covariates that produce the
lowest value of the objective criterion Q(�ik ; �). In order to reduce the number of
models that have to be Ht, covariates are added to the model in a manner analogous to
step-wise variable selection in linear regression until the value of the Q function stops
decreasing appreciably.

4. An Example

4.1. Gallup survey and covariates

The data analyzed here come from a Gallup Organization household survey on the
use of alcohol and illegal drugs among civilian, non-institutionalized adults in a par-
ticular state. Based on assessments of use and dependence levels, the state can project
treatment needs. Sample sizes were chosen to achieve a desired level of accuracy in
estimating prevalence at the state level and then divided among the planning regions.
Independent random digit dialing samples using Casady and Lepkowski’s (1993) trun-
cated method were generated for each planning region, as described in Chattopadhyay
et al. (1999).

In order to allocate the sample to the regions, optimal sample sizes were computed
based on an index formed from drug treatment admission rates in the counties in
the planning regions. Additional sample was allocated in each region to the 18–45
age group. Sampling weights wijkl were calculated to compensate in estimation for
disproportional sampling fractions relative to current census population estimates.

The county-level covariates come from the U.S. Census and the Kids Count 1993
survey from the Center for the Study of Social Policy (1993). There are dozens of
variables that could be used in the prediction equations. We illustrate our method
by considering nine auxiliary variables that record various rates. We do not claim
subject area expertise in our selections. The variables are unemployment rate (UNE),
percentage of housing units that are vacant (VAC), percentage of population 18 years
of age or younger (YOUNG), percentage of population classiHed as minority (MIN),
percentage of children under 18 living in poverty as deHned by the U.S. Bureau of
the Census (POV), percentage of children in families headed by a person without a
spouse in the home (SINGLE), percentage of youths 18 years of age or younger with
status oDenses, misdemeanors, and felonies (CRIM), percentage of families with related
children who are AFDC recipients (AFDC), and percentage of births with prenatal care
in Hrst three months of pregnancy (PRENAT).

The main outcome yijkl considered here is whether or not a respondent is dependent
on alcohol as deHned by the National Technical Center’s DSM-III-R criteria. People
dependent on or abusing alcohol according to the criteria may be eligible for treatment.
There are eight demographic groups used to stratify the population: a two-by-four cross
of sex (Female, Male) with age (18–24, 25–44, 45–64, 65+).



M.D. Larsen / Journal of Statistical Planning and Inference 112 (2003) 89–98 95

Table 1
Objective criterion Q(�ik ; �) for models 1 and 2 with single covariates

Covariates Q(�ik ; �)

POV 22.7
AFDC 23.4
UNE 26.0
SINGLE 26.2
YOUNG 27.3
VAC 27.5
PRENAT 27.8
CRIM 27.9
MIN 28.3
Nonea 56.5

aNo covariates corresponds to Model 1.

4.2. Results

The function Q is minimized in this example using the method of steepest de-
scent. Multiple starting values lead to the same values of Q, which were checked
to be minimum values by perturbing parameter values and recomputing Q. The vari-
able reporting the percentage of children under 18 living in poverty as deHned by the
U.S. Bureau of the Census (POV) had the lowest value of Q: 22.74. Variables were
standardized to have mean 0 and variance 1. The Q criterion evaluated on Model 1
was much higher. In Model 1, the value of �ijk is estimated to be �̂ik = �̂ik in corre-
spondence with model assumptions. The coeLcient for the variable POV was negative
(−0:50), which means that, other things being equal, the predicted percent classiHed as
dependent on alcohol in a demographic group in counties in a planning region is re-
duced in counties with higher poverty rates relative to what the prediction would have
been otherwise. This variable has correlation in counties with positive direct estimates
with direct county-level estimates of alcohol dependence rates of −0:38 on the linear
scale and −0:41 on the logistic scale. Table 1 presents results.

When a second covariate is added to variable POV in the second model, the Q
criterion decreases, but not by much. The lowest value (21.9) is achieved by com-
bining POV and SINGLE, the percentage of children in families headed by a person
without a spouse in the home. The coeLcients on POV and SINGLE are −0:44 and
−0:16, respectively. Given the complexity of the model, for a demographic group in a
county the negative coeLcient on SINGLE does not mean simply that predictions of
alcohol dependence decrease as the percentage of children in singly headed households
increases.

Adding a third variable to these two did not decrease Q very much.
Table 2 displays estimates and square root of estimated mean square errors for the

empirical Bayes estimator and estimated standard error for the direct survey estimator
for 40 counties from the state. Direct survey estimates (�̂ij

D) are quite variable. The
empirical Bayes estimator (�̂ij

EB1) based on the Hrst model exhibits less variability. It
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Table 2
Estimates and error estimates for 40 counties

Model 2 Model 2 Observed Sample
Direct Model 1 One predictor Two predictors groups size

�̂ij
D (Est.se) �̂ij

EB1 (
√

MSE) �̂ij
EB2 (

√
MSE) �̂ij

EB2 (
√

MSE)

1 1.7 2.9 1.6 0.7 1.6 0.5 1.5 0.5 8 30
2 4.4 2.4 2.1 1.0 4.8 1.5 4.0 1.3 8 111
3 0.0 0.0 3.0 1.1 2.3 1.2 2.6 1.3 8 36
4 0.0 0.0 5.3 2.1 3.0 1.2 3.3 1.1 5 6
5 9.4 5.3 6.9 2.3 6.3 2.4 6.7 2.3 8 37
6 1.6 1.3 2.7 0.9 3.3 1.5 2.8 1.3 8 136
7 9.3 7.3 3.1 1.1 2.1 1.1 2.0 1.1 6 25
8 0.0 0.0 3.1 1.1 1.2 0.8 1.4 0.9 7 20
9 0.0 0.0 5.8 2.3 3.9 1.5 4.7 1.6 3 3

10 1.5 1.2 1.9 0.7 2.5 0.9 2.3 0.9 8 81
11 0.0 0.0 1.5 0.7 3.0 1.0 2.5 0.9 8 58
12 7.0 6.3 1.8 0.8 3.5 1.1 3.7 1.2 6 14
13 5.7 5.7 6.4 2.3 5.7 2.2 5.2 1.8 8 37
14 0.0 0.0 1.6 0.8 4.9 1.6 4.8 1.7 4 12
15 2.4 1.6 4.4 1.7 3.5 1.4 3.2 1.2 8 120
16 4.1 4.1 3.0 1.0 3.8 1.6 4.3 1.7 7 32
17 2.8 2.8 1.8 0.9 4.6 1.5 4.3 1.6 8 48
18 3.9 1.3 3.2 0.8 2.9 1.3 2.5 1.1 8 316
19 0.0 0.0 5.7 2.3 3.0 1.2 2.8 0.9 5 19
20 3.1 3.1 3.2 1.1 1.5 0.9 2.0 1.1 6 20
21 2.7 1.8 5.8 1.8 3.7 1.3 3.5 1.1 8 102
22 4.2 2.2 2.2 0.7 3.1 1.1 3.0 1.1 8 124
23 9.7 3.4 8.8 2.4 7.7 2.4 7.5 2.1 8 121
24 0.0 0.0 1.9 0.8 4.3 1.5 5.2 1.8 6 22
25 7.8 5.0 1.8 0.7 5.7 1.9 6.0 2.1 6 32
26 0.0 0.0 1.6 0.8 1.9 0.6 1.9 0.6 7 28
27 2.2 2.2 4.9 2.0 4.5 1.9 3.3 1.2 8 63
28 10.5 10.5 1.7 0.8 4.6 1.5 5.4 1.8 5 5
29 0.0 0.0 3.0 1.1 4.1 1.8 4.2 1.8 5 12
30 0.0 0.0 1.5 0.7 2.6 0.9 2.7 0.9 6 11
31 4.6 3.3 5.8 2.2 5.1 1.8 5.9 1.9 8 44
32 8.4 4.5 4.1 1.2 7.0 2.1 7.7 2.1 8 52
33 2.5 1.5 2.1 0.7 2.9 1.1 2.9 1.1 8 144
34 2.9 2.8 1.7 0.8 2.3 0.7 2.2 0.8 7 49
35 0.0 0.0 2.8 1.0 2.2 1.2 2.4 1.2 8 22
36 0.0 0.0 2.9 1.0 1.9 1.1 2.2 1.1 6 17
37 4.2 4.7 2.1 0.8 2.7 1.0 2.8 1.0 6 26
38 0.0 0.0 5.7 2.4 3.3 1.3 3.4 1.2 6 16
39 0.0 0.0 3.0 1.1 4.0 1.8 4.7 1.8 6 10
40 5.3 2.1 3.5 0.9 3.3 1.6 3.2 1.5 8 144

is arguable that the nonzero estimates for �̂ij
EB1 are more believable than the estimated

zeros for �̂ij
D. Estimates using the synthetic (�̂ij

S) and composite (�̂ij
C) estimators are

presented and their problems are discussed in Chattopadhyay et al. (1999).
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The empirical Bayes estimator (�̂ij
EB2) based on model two produces estimates that

are diDerent from those produced by the other estimators. The adjustment reCects the
use of the covariate POV in the model. The estimated MSE’s for the Model 2 estimates,
however, are not lower than those for Model 1. The average MSE value is about the
same for the two models. The source of the increase in the MSE’s over Model 1 is
the larger changes in the jackknife estimates of �ij: [�ij(−u)

EB2. As some counties are
removed from the calculation of �ik and �, parameter estimates (�̂ik ; �̂ ) change enough
to cause large changes in the estimated proportions. Minimizing the Q criterion is not
equivalent to minimizing MSE. The changes in proportions increase the value of the
second term in (1).

When the second covariate SINGLE is added to Model 2, the proportions change
a little bit, but not much. The small change in estimates is consistent with the small
decrease in the Q criterion. When SINGLE is included, estimated mean square er-
rors decrease on average, but not by much, from what they were with one covariate.
SINGLE apparently is not contributing much additional information about dependence
rates.

5. Conclusion

Small-area estimation methods can be useful when estimates are desired for more
than one small area, sample size is inadequate in some areas for direct estimation,
and estimators that “borrow strength” across areas are acceptable. The empirical Bayes
estimators presented here are based on models that have few distributional assumptions
and incorporate survey weights. They compromise between synthetic estimators that
tend to be very stable, but unresponsive to large sample sizes in some areas, and direct
estimators that are quite variable with small sample sizes. The level of compromise
in each county in the second model is determined in part through the inCuence of
covariate information.

The example from the Gallup organization was used to illustrate the methods. Al-
though adding covariates did not lead to large improvements in estimated mean square
error in this example, the methods presented here do provide a procedure for includ-
ing covariates and for assessing their contribution. Perhaps the factors of age and sex,
which were included in deHning demographic groups, and the clustering of counties
into planning regions were much more relevant for the outcome of alcohol dependence
than the covariates considered here.

Further study will include comparison of empirical Bayesian methods with hierarchi-
cal Bayesian methods that specify distributions for parameters �ik and �. Additionally,
the inCuence of the value of d will be studied.
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