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For estimating crop acreage in “small areas” using ground vey Regression estimator is not sufficiently precise for most
uses. In this study we follow a model-based approach:survey and remote sensing, an Empirical Best Linear Unbi-

ased Predictor Estimator is considered. It is a weighted we consider a statistical model to “borrow strength” from
related small areas in order to obtain precise estimates formean of the Survey Regression and the Synthetic Regres-

sion estimators. The gain in precision due to the remotely a given small area. Based on this model of the relationship
between ground and satellite data, a Best Linear Unbiasedsensed data is estimated for a case study. Elsevier Sci-

ence Inc., 2000 Predictor (BLUP) estimator is defined, which makes opti-
mal use of the available data, according to statistical criteria.

Since the BLUP estimator has optimal statistical prop-
erties, it would be preferred to any other linear estimatorINTRODUCTION
for a given sample size. However, it is necessary to verifyDetailed information about land cover and land use is the model assumptions since the statistical properties ofnecessary in order to implement environmentally sensitive the BLUP estimator are optimal only if the model assump-policies and practices and to monitor and control such tions are correct. In the specified model, the basic assump-policies. Satellite imagery provides a complete spectral tion is that the errors (the residuals resulting from thecharacterization of an area in digital form. This can be difference between the true scene and the inferred sceneused to classify the area by crop types. However, the avail- by the classification of the image data) are positively corre-ability of such spectral data does not eliminate the need lated within the small areas. This assumption derives fromfor ground data. Since it is difficult to differentiate between the fact, largely documented in the literature [for someland uses (particularly between crops) with a very similar references, see Labovitz and Masouka (1984)], that re-spectral signature, the estimates of land use acreage based motely sensed data are spatially correlated. This spatialonly on satellite data are not accurate enough. The design- correlation is positive and decreases when the distancebased Survey Regression estimator (Cochran, 1977) is a between pixels increases so that the intrasmall areas corre-well-known method for estimating land use and land cover lation (average correlation between pairs of pixels fromin large geographical areas (state or region) using remote the same small area) decreases when the small area size in-sensing and ground data (Hanuschak et al., 1982; Allen, creases.1990; Ambrosio et al., 1993; Deppe, 1998). In order to verify the model assumption, a statistic isHowever, there is a growing demand for reliable esti- introduced [Eq. (11)]. If the model assumption is not cor-mates over small areas (counties, irrigated areas). Due to rect, that is, if the errors are not correlated inside smallthe small sample size in small areas, the design-based Sur- areas, then, as will be seen, the BLUP estimator turns into
a Synthetic Regression estimator. In this case, for a given
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Regression estimator: The calculations are easier than for Ŷi5fi yi1(12fi)Ŷ *i (1)
the BLUP estimator and precision is similar. A case study

where fi5ni/Ni is the sampling ratio, yi is the sample averageis presented showing how to evaluate this assumption in
of yij, and Ŷ *i is a predictor of the mean hectares perpractice and also comparing the relative efficiency of the
segment in the remaining segments not included in theproposed BLUP estimator with three other estimators
sample.(Survey Regression, Synthetic Regression, and Direct

Expansion estimator). The gain in precision in the estimates
The Modelattributable to remotely sensed data is also evaluated.
The predictor Ŷ *i , in this case considered to be the BestThe data requirements are detailed in the next section.
Linear Unbiased Predictor (BLUP), is based on the LinearBasically only two kinds of data are necessary: A classified
Mixed Model (Battese et al., 1988):scene from the image data (using “training pixels” in order

to identify the image signature that corresponds to each yij5b11b2xij1vi1eij (2)
type of ground data) and ground data observed in a sample

where b1 and b2 are unknown parameters with fixed valuesof “segments.” A numerical example has been included as
(fixed-effects), vi are independent random variables ofan appendix.
mean zero and variance rv

2 (random effects), and the eijA program written for the IML procedure of the SAS
are independent random variables of mean zero and vari-statistical package can be obtained from the authors
ance re

2. vi and eij are independent so that the variance ofupon request.
uij5vi1eij is r2

u5r2
v1r2

e (r2
v and r2

e are called variance com-
ponents).

GROUND AND SATELLITE DATA
Model [Eq. (2)] can be specified as a fixed-effect model

It is assumed that the ith small area (i51, 2, . . ., m) is with autocorrelated errors instead of a mixed model:
divided into Ni sampling units or “segments.” Associated

yij5b11b2xij1uij (3)with the jth segment (j51, 2, . . ., Ni), there are two num-
bers (yij,xij): yij is the true number of hectares (fixed, but where b1 and b2 are unknown parameters with fixed values
unknown) of the land use in the segment and xij is the (fixed-effects) and uij are random variables of mean zero
number of hectares of classified land use in the segment, and covariance structure:
observed by remote sensing. In order to estimate the mean

per segment, Yi5
1
Ni

o
Ni

j51
yij, of the y-values in each one of Cov(uij,ui9j9)5





r2
v1r2

e; ∀i5i9; j5j9
r2

v; ∀i5i9; j?j9
0; ∀i?i9

(4)
the ith small areas (i51, 2, . . ., m), a simple random sample
of n sampling units or segments is selected from among Substituting in Eq. (2) uij5vi1eij, it can be seen that
the N5o

m

i51
Ni total segments. Since Ni is known, an estimate both models [Eqs. (2) and (3)–(4)] have the same fixed

part and the same variance and covariance matrix, V, of
of the total Yi5o

Ni

j51
yij is the estimate of the mean multiplied the random part: specific for the whole sample size n5

o
m

i51

ni; this matrix is V5r2
vJ1r2

eI, where J5diag{J1,J2, . . .,Ji,by Ni and the standard error of the total estimator is Ni

times the standard error of the mean estimator. The num-
. . . . Jm} is a block diagonal matrix with Ji being a squareber ni of sampling units in the ith small area is a random
matrix of the order ni, with all the elements equal to 1,value ranging from 0 to n. For the selected sample both
and I being the identity matrix of the order n.numbers {(yij,xij); j51,2, . . .,ni; i51,2, . . .,m} can be ob-

Models (2) and (3)–(4) are simple ways of taking intoserved. Since the satellite data are a complete classification
account the fact that the errors uij5vi1eij5yij2b12b2xij areof the landscape, it is possible to establish the xij-values for
spatially correlated. This correlation is due to the spatialeach of the N segments of the whole population: {xij; j51,2,
autocorrelation of the ground data yij, on the one hand,. . .,Ni; i51,2, . . .,m}. However, as will be seen, only the
and of the remotely sensed data xij, on the other hand.

totals, Xi5o
Ni

j51
xij or means Xi5

1
Ni

o
Ni

j51
xij for i51,2, . . .,m, are Many quantitative geographical texts refer to the positive

correlation of spatial variables, among them yij, as the firstrequired apart from the sample data {(yij,xij); j51,2, . . .,ni;
law of geography [“Everything is related to everything, buti51,2, . . .,m}. Even if ni50 for a given small area, it will
near things are more related than others” (Csillag andbe possible to estimate Yi from Xi.
Kabos, 1999)]. The spatial correlation of the remotely
sensed data xij (Labovitz and Masuoka, 1984; Webster et

BEST LINEAR UNBIASED PREDICTOR al., 1989) is induced by instruments: The sensors measure
(BLUP) ESTIMATOR light reflectance from the Earth’s surface, but this light is

scattered so that reflectance from a pixel can be distributedIn order to estimate Yi, a model-based estimator is consid-
ered (Royall, 1970; Royall and Herson, 1973): over several contiguous pixels on the image (Haining, 1991;
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Forster, 1980). The relationship between yij and xij could to know xij9 for j9 (?j) from 1 to Ni–ni, but only their total Xi,
that is, the total land use area classified by remote sensing.be exploited more efficiently if this spatial correlation were

In general, the variance components r2
v and r2

e are un-taken into account, which can be achieved in many differ-
known. For their estimation, several procedures have beenent ways. Cokriging is one of them (Dungan, 1998). How-
proposed (Khuri and Sahai, 1985). By Henderson methodever, this technique requires a large sample size for empiri-
3, the following are unbiased estimators of r2

v and r2
e (Prasadcal semivariogram estimation of both yij and xij (Curran,

and Rao, 1990):1988) as well as an empirical cross semivariogram of yij

and xij in order to assess spatial correlation as a function
r̂2

e5êTê/(n2m21),
of the distance between segments [see Tokola et al. (1996)
for other methods based on distance]. r̂2

v5[ûTû2(n22)r̂2
e]/n* (7)

In this study the effect of spatial correlation is taken
into account by specifying in Eq. (4) that the errors uij are where [Eq. (8)]
positively correlated inside small areas and uncorrelated

n*5n2trace5(XTX)21o
m

i51

n2
i xT

i xi65o
m

i51

ni[12nisi(XTX)21xT
i , (8)between small areas. The correlation coefficient, q5r2

v/
(r2

v1r2
e) is considered to be the same for every small area.

êTê is the residual sum of squares of model (2) fitted by
The BLUP Estimator Ordinary Least Squares and taking vi as fixed, that is, the

residual sum of squares of the Dummy Variable model,The BLUP of Y*i , based on the sample size n5o
m

i51

ni, is
and ûTû is the residual sum of squares of model (2) fitted

(Goldberger, 1962; Robinson, 1991; Cressie, 1991) by Ordinary Least Squares and taking vi50. The Dummy
Variable model is yij5li1b2xij1eij, with li5(b11vi). It isŶ *i 5X*i b̂1v̂i (5)
assumed that the intercept li changes from one small area
to another: This assumption is specified by associating awhere
variable (Dummy) Di with each li (i51,2, . . .,m), the value

X*i 5[1X*i ] where X*i is the mean of xij in the remain- of which is 1 for every sample segment from the ith small
ing (Ni–ni) segments of the ith small area, not area and 0 for the remaining segments in the sample
included in the sample, (yij5l1D11l2D21 . . . 1liDi1 . . . 1lmDm1b2xij1eij ∀i;

b̂5(XTV21 X)21(XTV21 Y) is the estimator of i51,2, . . .,m; the variable Di takes “n” values, the ni values
b5[b1b2]T, corresponding to the segments from the ith small area are

equal to 1 and the remaining n–ni values are equal to 0).where
Replacing r2

v and r2
e by r̂2

v and r̂2
e, the result is an estima-X5[1x] where 1 is a column vector (n31) of ones

tor Ŷ
ˆ

i of the estimator Ŷi, called the Empirical Best Linear
and x the column vector (n31) of the xij values Unbiased Predictor (EBLUP) estimator, and replacing
in the sample, r2

v and r2
e by r̂2

v and r̂2
e in Eq. (5), the result is an estimator

V215diag(V21
1 ,V21

2 , . . . V21
i , . . .,V21

m ) is a block V̂ of the variance and covariance matrix V.
diagonal matrix with

V21
i 5

1
r2

e

I(ni)2
gi

(nir2
e)

1(ni) 1T
(ni), where I(ni) is the THE ESTIMATOR OF THE MEAN SQUARED

ERROR OF THE EMPIRICAL BEST LINEARidentity matrix of order ni and 1(ni) is a column
UNBIASED PREDICTOR (EBLUP) ESTIMATORvector (ni31) of ones,
Assuming that the distribution of vi and eij is normal, anv̂i5gi(yi2xi b̂) is the BLUP of vi (assuming that r2

v and
approximately unbiased estimator of the Mean Squaredr2

e are known), where gi5r2
v/[r2

v1(r2
e/ni)] and

Error of the EBLUP estimator, MSE (Ŷ
ˆ

i), is (Prasad andxi5[1xi], while xi is the sample mean of xij, in
Rao, 1990; Ghosh and Rao, 1994)the ith small area,

Y is the column vector (n31) of the yij values in the M̂SE(Ŷ
ˆ

i)5(12fi)2[h1i(r̂2
v,r̂2

e)1h2i(r̂2
v,r̂2

e)12h3i(r̂2
v,r̂2

e)] (9)
sample.

where
Replacing Ŷ *i in Eq. (1) by that of Eq. (5) and ignoring
the sampling ratio (i.e., assuming that ni is small with re- h1i(r̂2

v,r̂2
e)5gi1r

2
e

ni
21(12fi)2(Ni2ni)

N2
ispect to Ni), the BLUP estimator is found:

h2i(r̂2
v,r̂2

e)5r̂2
e(X*i 2gixi)A21(X*i 2gixi)TŶi5(12gi)Xi b̂1gi[yi1(Xi2xi)b̂] (6)

where Xi5[1Xi] and Xi is the population mean of xij for the h3i(r̂2
v,r̂2

e)5
1
n2

i

1

1r̂2
v1

r̂2
e

ni
2
3[(r̂

2
e)2Var(r̂2

v)1(r̂2
v)2Var(r̂2

e)
ith small area.

For the calculation of the estimates Ŷ*i it is not necessary
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an estimator of b and di is a nonnegative constant (Harter,
22r̂2

er̂2
vCov(r̂2

e,r̂2
v)]

1983). This class is interesting because the most usual
where estimators are elements of the class. For b̃5b̂ and di5gi

the BLUP estimator is defined in (6). For b̃5b̂ and di50,
A5o

m

i51
3o

ni

j51

xij
Txij2ginixi

Txi4 the Synthetic Regression estimator Ŷi(0)5Xi b̂ is the result.
For b̃5b̂ and di51, Ŷi(1)5yi1(Xi2xi)b̂ is the Survey Regres-xij5[1xij]
sion estimator.

The Mean Squared Error (MSE) of the estimatorsVar(r̂2
v)5

2
n2

*
3 1
n2m21

(m21)(n22)(r̂2
e)2

Ŷi(0) and Ŷi(1) can be expressed as a function of the Mean
Squared Error of the BLUP (Harter, 1983), MSE(Ŷi):

12n*r̂2
er̂2

v1n**(r̂2
v)24

MSE[Ŷi(0)]5MSE(Ŷi)1g2
i 3r2

v1
r2

e

ni

2xi(XTV21X)21xT
i 4

Var(r̂2
e)5

2(r̂2
e)2

n2m21
MSE[Ŷi(1)]5MSE(Ŷi)1(12g2

i )3r2
v1

r2
e

ni

2xi(XTV21X)21xT
i 4

Cov(r̂2
e,r̂2

v)52
1
n*

(m21)Var(r̂2
e) (10)

These MSE can be estimated replacing MSE(Ŷi) bywhere
M̂SE(Ŷ

ˆ
i) and V by V̂. The relative efficiency of the EBLUP

n**5o
m

i51

n2
i (12nixiA21

1 xT
i )1trace{(A21

1 o
m

i51

n2
i xT

i xi)2}. estimator with respect to the Synthetic Regression and the
Survey Regression estimators will be estimated by

Because A15o
m

i51
o
ni

j51

xij
Txij, n** may be simplified to M̂SE(Ŷi(0))/M̂SE(Ŷ

ˆ
i) and M̂SE(Ŷi(1))/M̂SE(Ŷ

ˆ
i), respec-

tively, and with respect to the Direct Expansion estimator
by V̂(yi)/M̂SE(Ŷ

ˆ
i). The relative efficiency of the Surveyn**5o

m

i51

n2
i [12xi(XT X)21xi

T]5n*2n1o
m

i51

n2
i

Regression estimator with respect to the Direct Expansion
estimator will be estimated by REi5V̂(yi)/M̂SE(Ŷi(1)).

RELATIVE EFFICIENCY OF THE EMPIRICAL Note that the estimator in (6) is a weighted mean of
BEST LINEAR UNBIASED PREDICTOR the extreme estimators Ŷi(0) and Ŷi(1), the weights being
(EBLUP) ESTIMATOR gi and (12gi), respectively. When r2

v50, then gi50 and the
BLUP is reduced to the Synthetic Regression estimatorDirect Expansion Estimator
Ŷi(0) and its mean squared error is estimated by Eq. (12)

The Direct Expansion estimator is the design-based esti- with r̂2
v50. When r2

v.0, then gi?0 and the BLUP estimator
lies between the extreme Synthetic Regression estimatormator defined by yi5o

ni

j51

yij/ni. It does not make use of the
and the Survey Regression estimator, approaching one or

remote sensing data, only of the sample information on yij. the other depending on q5r2
v/(r2

v1r2
e) (the correlation coef-

The expected variance of this estimator is given by (Hansen ficient inside small areas) and on the sample size ni. When
et al., 1953, Vol. 2, Chap. 4, Sec. 17] r2

v is small with regard to (r2
v1r2

e) (i.e., q is small), then gi

V(yi)5(12f)S2
i /(nPi)1QiS2

i /(nPi)2 tends to be low, except when ni is very high so that on the
basis of (10) M̂SE(Ŷi(0))/M̂SE(Ŷi) tends toward 1 and the

where Pi5Ni/N, Qi512Pi and S2
i 5o

Ni

j51

(yij2Yi)2/(Ni21). Synthetic estimator tends to be as efficient as the BLUP
estimator. When r2

v is large with regard to (r2
v1r2

e) and niAssuming that the variance within small areas S2
i , is the

is high, then gi is far from zero and the BLUP estimatorsame in every small area and equal to S2
w, it can be estimated

tends toward the Survey Regression estimator, Ŷi(1) [i.e.,
by Ŝ2

w5o
m

i51

(ni21)s2
i /(n2m), where s2

i 5o
m

j51

(yij2yi)2/(ni21). on the basis of (10), M̂SE(Ŷi(1))/M̂SE(Ŷi) tends toward 1].
The null hypothesis r2

v50 versus the alternative hy-An estimator, V̂(yi), of the variance of the Direct Expan-
pothesis r2

v.0 can be tested using the statistic:sion estimator, V(yi), can be defined replacing S2
i by Ŝ2

w.
The relative efficiency of the EBLUP estimator with re-
spect to the Direct Expansion estimator would be esti-

klm5
n

2(n21)3o
m

i51
1o

ni

j51

ûij2
2

o
m

i51
o
ni

j51

û2
ij

214
2

(11)mated by V̂(yi)/M̂SE(Ŷ
ˆ

i).

The Survey Regression and the Synthetic
Regression Estimators where ûij is defined in Eq. (7) and n5n/m. This statistic

is distributed asymptotically as v2 with one degree of free-The estimator defined in Eq. (6) belongs to a class of
estimators of the form Ŷi(di)5Xi b̃1di(yi2xi b̃), where b̃ is dom (Judge et al., 1985).
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Table 2. Estimates for Irrigated Corn in UnsampledNONSAMPLED AREAS
Small Areas

In small areas where ni50, the Synthetic Regression esti-
Geographical Estimate Standardmator is used as the estimator of Yi, and the mean squared Small Area Surface (ha) (ha/segm.) Error

error is estimated by
Adearregada 601 1.58 0.72
Ejeme Galizancho 738 1.70 0.72MŜE(Ŷi)5Xi(XTV̂21X)21XT

i 1r̂2
v (12)

Guma 4157 0.98 0.72
Olmillos 233 0.98 0.72
Villamayor 596 1.18 0.72RELATIVE EFFICIENCY GAINED FROM
Zorita 390 1.12 0.72REMOTE SENSING DATA

A measure of the gain in precision due to remote sensing
data is the following RE*i 5M̂SE(Ŷ

ˆ
i)gd/M̂SE(Ŷ

ˆ
i), where Relative Efficiency between Estimators

M̂SE(Ŷ
ˆ

i)is as defined in Eq. (9) and M̂SE(Ŷ
ˆ

i)gd is the Mean The EBLUP estimator is the most efficient of the four
Squared Error of the EBLUP estimator of Yi obtained estimators. The worst estimator is the “Direct Expansion
using the same sample of segments and based on a model estimator.” The relative efficiency of the Synthetic and the

Survey regression estimators with regard to the EBLUPignoring xij: yij5b11vi1eij in (2).
estimator depends on gi [Eq. (5)], which in turn dependsThe EBLUP estimator of Yi and the estimator
on the ratio between the variance components r2

v and r2
eM̂SE(Ŷ

ˆ
i)gd, based on the latest model, are obtained as spe-

as well as on the sample size ni. Table 3 shows the estimatescific cases of that obtained from model (2), substituting
of these variance components for the three crops consid-X51, b5b1, b̂5b̂1, Xi51, xi51, xij51 and also replacing
ered. The values of k1m observed when using Eq. (11) are(n2m21) by (n2m) and (n22) by (n21).
6.9713 for corn, 5.6046 for sugar beet, and 18.8368 for
sunflower so that r2

v is significantly different from zero
[with a significance level of 5% for sugar beet (v2

0.95(1)53.84)A CASE STUDY
and 1% for corn and sunflower ([v2

0.99(1)56.63)]. Hence,
The basin of the Duero river, which flows through Spain on the basis of Eq. (5), gi is different from zero (when
and Portugal into the Atlantic Ocean, has been taken as a ni?0). The ratio r̂2

v/(r̂2
e1r̂2

v) is 0.08 for corn and sugar beet,
case study. In order to manage the water resources for but 0.21 for sunflower. Hence, ĝi is near zero for corn and
irrigation, the basin is divided into small areas called “irriga- sugar beet, and on the basis of Eqs. (6) and (10), the
tion zones,” following agricultural and administrative crite- Synthetic estimator is nearer the EBLUP estimator than
ria: The number of zones in the Spanish part of the basin the Survey Regression estimator, except when ni is high
is m553. Estimates of irrigated crop acreage in each one (in Paramo, where ni517, the Survey Regression estimator
of these “zones” are required for the main crops (corn, outperforms the Synthetic Regression estimator). For sun-
sunflower, and sugar beet) in order to estimate the water flower ĝi is far from zero and increases when ni increases
irrigation requirements in each “zone.” The estimates are so the Survey Regression estimator is nearer the EBLUP
to be based on ground and satellite data. As a sampling estimator than the Synthetic Regression estimator, except
frame the UTM (Universal Transversa Mercator) grid is when ni,4 (or gi,0.5).
used. The segment, or sampling unit, is a squared cell of The relative efficiency, REi, of the remote sensing data
500 m3500 m, that is, 25 hectares. Each cell is identified ranged i) from 1.51 and 3.26 for corn, with the average
by the UTM coordinates in the southwest corner. A random being 2.25, ii) from 1.17 and 2.38 for sunflower, with an
sample of n5158 segments is selected from among the average of 1.58, and iii) from 1.91 and 4.13 for sugar beet,
whole population. The number of segments in the sample with an average of 2.79. These figures are of the order
from a small area or “zone” ranges from zero to 17, the found for large areas (Ambrosio et al., 1993). The differ-
average being 4. ences between the crops are explained by the fact that the

spectral signatures of corn and sugar beet crops are more
The Estimates
Table 1 shows the estimates for irrigated corn crop acreage,

Table 3. Estimates of the Variance Components and (within
computed by using expression (6) and its standard error Brackets) of Its Standard Error
[square root of the estimated mean squared error of the

Variance Componentsestimator computed by using Eq. (9)] as well as the stan-
r̂2

v r̂2
edard error of the remaining estimators. For unsampled

Crop (Standard Error of r̂2
v) (Standard Error of r̂2

e)small areas, Table 2 shows the Synthetic Regression esti-
Corn 0.4725 (0.4540) 5.5944 (0.6706)mates and their standard error [square root of the estimated
Sugar beet 0.5012 (0.4427) 5.4780 (0.6571)mean squared error of the estimator, computed by using
Sunflower 0.7511 (0.3449) 2.7614 (0.3312)Eq. (12)].
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i)gd /M̂SE(Ŷ
ˆ
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Small Area yij xijForster, B. C. (1980), Urban residential ground cover using Land-
sat digital data. Photogramm. Eng. Remote Sens. 46:547–558. 1 1.04 0.10

Ghosh, M., and Rao, J. N. K. (1994), Small area estimation: an 2 4.56 0.90
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2 7.20 4.78Goldberger, A. S.(1962), Best linear unbiased prediction in the
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Table A.2. Population Data ê5[0.0000 0.0740 0.1468 20.1864 20.0344
Number of Small Area Mean per 0.4847 20.4847 0.0000]T

Small Segments Segment Classified by
Area (Ni) Remote Sensing (Xi) êTê50.5328

1 12 1.05 xi5[1 xi], where xi is the sample mean of the xij from Table2 71 1.91
A.1: 0.1, 1.5575, 6.57, and 0.3, for the small areas 1, 2, 3,3 131 4.23

4 14 1.5 and 4, respectively,
xi(XTX)21xT

i is equal to 0.2142, 0.1382, 0.3915, and 0.1998
for the small areas 1, 2, 3, and 4, respectively.

per segment of the surface classified by remote sensing as Hence, n*53.8088, r2
e50.1776 and r2

v57.05.
the crop type, Xi. The estimates of gi are ĝ150.9754; ĝ250.9937;

ĝ350.9876; and ĝ450.9754 for the small areas 1, 2, 3 and
Verification of the Model Assumption 4, respectively. The estimates of V21

i are
Using data from Table A.1, the value of the statistic defined V̂21

1 50.1385;
in Eq. (11) is calculated. The vector of ordinary least square
(OLS) residuals of model (3) is

û5Y2X(XTX)21XTY V̂21
2 5

1
0.1776






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





2

0.9937
430.1776






1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




where:

Y5[1.04 4.56 3.96 7.20 4.19 3.55 1.28 2.05]T

5






4.2318 21.3988 21.3988 21.3988
21.3988 4.2318 21.3988 21.3988
21.3988 21.3988 4.2318 21.3988
21.3988 21.3988 21.3988 4.2318






X53 1
0.10

1
0.90

1
0.00

1
4.78

1
0.55

1
7.44

1
5.70

1
0.304

T

So that:
V̂21

3 5
1

0.1776


1 0
0 1



2

0.9876
230.1776



1 1
1 1


û5[22.1952 1.2427 0.7351 3.4841 0.9086

20.4392 22.5304 21.2057]T

5


2.8502 22.7804
22.7804 2.8502


ûTû5o

m

i51
o
ni

j51

û2
ij527.9176

and V̂21
4 50.1385, for the small areas 1, 2, 3, and 4,

respectively.
o
m

i51
1o

ni

j51

ûij2
2

555.6744
Using b̂5(XTV̂21X)21(XTV̂21Y) where X and T are as above
and V̂215diag(V̂21

1 V̂21
2 V̂21

3 V̂21
4 )5Since the sample size is eight, n58, and the number of

small areas four, m54, the average sample size per small
area is two, n58/452, and replacing n and n in Eq. (11),
the result is klm53.9541. Since v2

0.95(1)53.84, the null hy-
pothesis, r2

v50, is rejected and the model assumption ac-
cepted.










0.1385 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 4.2318 21.3988 21.3988 21.3988 0.0000 0.0000 0.0000

0.0000 21.3988 4.2318 21.3988 21.3988 0.0000 0.0000 0.0000

0.0000 21.3988 21.3988 4.2318 21.3988 0.0000 0.0000 0.0000

0.0000 21.3988 21.3988 21.3988 4.2318 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 2.8502 22.7804 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 22.7804 2.8502 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1385










,

The Estimates
In order to estimate the mean per segment using (6),
estimates of b and gi are required. Estimates of r2

v and the estimate of b is calculated:
r2

e must be calculated, using (7). The vector of OLS residu-
als of the Dummy Variable model (2) is

b̂5

b̂1

b̂2


5


1.0954
0.7195


ê5Y2X̃(X̃TX̃)21X̃TY

Replacing in (6) gi by ĝi, Ŷ
ˆ

i5(12ĝi)(b̂11b̂2Xi)1ĝi[yi1where
b̂2(Xi2xi)], the estimates of the mean per segment in each
small area are calculated: Ŷ

ˆ
152.4462; Ŷ

ˆ
255.2137; Ŷ

ˆ
35

0.7736; and Ŷ
ˆ

452.8952 for the small areas 1, 2, 3, and 4,
X̃5







1 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1

0.10 0.90 0.00 4.78 0.55 7.44 5.70 0.30







T

respectively. The estimates of the total are Ŷ
ˆ

15123

2.4475529.3544, Ŷ
ˆ

257135.21375370.1727, Ŷ
ˆ

351313

0.77365101.3416 and Ŷ
ˆ

451432.8952240.5328 for the
small areas 1, 2, 3, and 4, respectively.so that
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The Mean Squared Error Estimate 

1 0.10
0.10 0.01


,From Eq. (9), the three components of the mean squared

error (MSE) of the estimator of the mean per segment
for small area 2 it isare calculated.

The first component of the estimate of the MSE is 

1 1.5575
1.5575 2.4258


,h11(r̂2

v,r̂2
e)50.2629, h12(r̂2

v,r̂2
e)50.059, h13(r̂2

v,r̂2
e)50.0954 and

h14(r̂2
v,r̂2

e)50.2494 for the small areas 1, 2, 3, and 4, respec-
for small area 3 it istively.

For the second component, the value of the vector 

1 6.57
6.57 55.1649


,X*i 5[1 X*i ] where X*i 5(NiXi2nixi)/(Ni2ni), is required. Us-

ing data from Table A.2: X*1 52.2273; X*2 51.9310; X*3 5
and for small area 4 it is4.1937 and X*4 51.5923, for the small areas 1, 2, 3, and

4, respectively. 

1 0.30
0.30 0.09


.In order to calculate the matrix A, it is necessary to

calculate the matrix xT
ijxij, where xij5[1 xij], where xij is given

in Table A.1. For small area 1: Hence, for small area 1, o
ni

j51
xT

ijxij2ginixT
i xi is

xT
11x115



1 0.10
0.10 0.01


. 


0.0246 0.0025
0.0025 0.0002




For small area 2: and is equal to

xT
21x215



1 0.90
0.90 0.81


; xT

22x225


1 0.00
0.00 0.00


; 


0.0252 0.0392
0.0392 14.3188


,



0.0248 0.1629
0.1629 2.5843


,



0.0246 0.0074
0.0074 0.0022


,

for the small areas 2, 3, and 4, respectively.xT
23x235



1 4.78
4.78 22.8484


; xT

24x245


1 0.55
0.55 0.3025


 The matrix A is the sum of these four last matrices,

each corresponding to a small area:for each of the four sample observations. For small area 3:

A5


0.0992 0.2120
0.2120 16.9055


, and A215




10.3582 20.1299
20.1299 0.0608


.xT

31x315


1 7.44
7.44 55.3536


; xT

32x325


1 5.70
5.70 32.49


.

And for small area 4: For small area 1, the second component of the mean
squared error is h21(r̂2

v,r̂2
e)50.0477 and h22(r̂2

v,r̂2
e)50.0015,

h23(r̂2
v,r̂2

e)50.0584 and h24(r̂2
v,r̂2

e)50.0179, for the small ar-xT
41x415



1 0.30
0.30 0.09


 eas 2, 3, and 4, respectively.

For the third component, the values of n** are needed
Hence, o

ni

j51

xT
ijxij is as well as the estimates of the variances, Var(r̂2

e) and
Var(r̂2

v), and the covariance, Cov(r̂2
e,r̂2

v): n**517.8088,
V̂ar(r̂2

e)50.021, V̂ar(r̂2
v)5123.3710 and Ĉov(r̂2

e,r̂2
v)5


1 0.10
0.10 0.01


 20.0165. For small area 1, the third component is

h31(r̂2
e,r̂2

v)50.0132. In the same way, the result is
for small area 1; for small area 2 it is h32(r̂2

e,r̂2
v)50.0009; h33(r̂2

e,r̂2
v)50.0034 and h34(r̂2

e,r̂2
v)5

0.0132 for the small areas 2, 3, and 4, respectively.

4 6.23
6.23 23.9606


 Finally, for small area 1, the mean squared error of the

estimator of the mean per segment is: MŜE(Ŷ
ˆ

1)5
for small area 3 it is

0.3370 and the standard error √MŜE(Ŷ
ˆ

1)50.5805. In the

same way there are standard errors, √MŜE(Ŷ
ˆ

2)50.2460,


2 13.14
13.14 87.8436




for small area 2, √MŜE(Ŷ
ˆ

3)50.4009 for small area 3 and
and for small area 4 it is √MŜE(Ŷ

ˆ
4)50.5419 for small area 4. The standard error of

the total estimators are √MŜE(Ŷ̂1)51230.580556.9660;

1 0.30
0.30 0.09


 √MŜE(Ŷ̂2)57130.246517.7216; √MŜE(Ŷ̂3)513130.40095

For each small area, xT
i xi is also calculated, where xi5 5.5179; √MŜE(Ŷ̂4)51430.541957.5866 for the small areas

1, 2, 3, and 4, respectively.[1 xi]. For small area 1, xT
i xi is


