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Land Cover Estimation in Small Areas Using
Ground Survey and Remote Sensing

L. Ambrosio Flores* and L. Iglesias Martinez!

ET estimating crop acreage in “small areas” using ground
survey and remote sensing, an Empirical Best Linear Unbi-
ased Predictor Estimator is considered. It is a weighted
mean of the Survey Regression and the Synthetic Regres-
sion estimators. The gain in precision due to the remotely
sensed data is estimated for a case study. OElsevier Sci-
ence Inc., 2000

INTRODUCTION

Detailed information about land cover and land use is
necessary in order to implement environmentally sensitive
policies and practices and to monitor and control such
policies. Satellite imagery provides a complete spectral
characterization of an area in digital form. This can be
used to classify the area by crop types. However, the avail-
ability of such spectral data does not eliminate the need
for ground data. Since itis difficult to differentiate between
land uses (particularly between crops) with a very similar
spectral signature, the estimates of land use acreage based
only on satellite data are not accurate enough. The design-
based Survey Regression estimator (Cochran, 1977) is a
well-known method for estimating land use and land cover
in large geographical areas (state or region) using remote
sensing and ground data (Hanuschak et al., 1982; Allen,
1990; Ambrosio et al., 1993; Deppe, 1998).

However, there is a growing demand for reliable esti-
mates over small areas (counties, irrigated areas). Due to
the small sample size in small areas, the design-based Sur-
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vey Regression estimator is not sufficiently precise for most
uses. In this study we follow a model-based approach:
we consider a statistical model to “borrow strength” from
related small areas in order to obtain precise estimates for
a given small area. Based on this model of the relationship
between ground and satellite data, a Best Linear Unbiased
Predictor (BLUP) estimator is defined, which makes opti-
mal use of the available data, according to statistical criteria.

Since the BLUP estimator has optimal statistical prop-
erties, it would be preferred to any other linear estimator
for a given sample size. However, it is necessary to verify
the model assumptions since the statistical properties of
the BLUP estimator are optimal only if the model assump-
tions are correct. In the specified model, the basic assump-
tion is that the errors (the residuals resulting from the
difference between the true scene and the inferred scene
by the classification of the image data) are positively corre-
lated within the small areas. This assumption derives from
the fact, largely documented in the literature [for some
references, see Labovitz and Masouka (1984)], that re-
motely sensed data are spatially correlated. This spatial
correlation is positive and decreases when the distance
between pixels increases so that the intrasmall areas corre-
lation (average correlation between pairs of pixels from
the same small area) decreases when the small area size in-
creases.

In order to verify the model assumption, a statistic is
introduced [Eq. (11)]. If the model assumption is not cor-
rect, that is, if the errors are not correlated inside small
areas, then, as will be seen, the BLUP estimator turns into
a Synthetic Regression estimator. In this case, for a given
sample size, the last estimator mentioned is preferred to
the BLUP estimator because it is as precise as the BLUP
estimator and its calculation is easier than for the BLUP
estimator. If the assumption is correct and the sample size
in a given small area is high, then, as will be seen, the
BLUP estimator turns into a Survey Regression estimator,
which would be preferred to the BLUP estimator in this
small area for the same two reasons regarding the Synthetic
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Regression estimator: The calculations are easier than for
the BLUP estimator and precision is similar. A case study
is presented showing how to evaluate this assumption in
practice and also comparing the relative efficiency of the
proposed BLUP estimator with three other estimators
(Survey Regression, Synthetic Regression, and Direct
Expansion estimator). The gain in precision in the estimates
attributable to remotely sensed data is also evaluated.

The data requirements are detailed in the next section.
Basically only two kinds of data are necessary: A classified
scene from the image data (using “training pixels” in order
to identify the image signature that corresponds to each
type of ground data) and ground data observed in a sample
of “segments.” A numerical example has been included as
an appendix.

A program written for the IML procedure of the SAS
statistical package can be obtained from the authors
upon request.

GROUND AND SATELLITE DATA

It is assumed that the ith small area (i=1, 2, ..., m) is
divided into N; sampling units or “segments.” Associated
with the jth segment (j=1, 2, .. ., N}), there are two num-
bers (y;x;): y; is the true number of hectares (fixed, but
unknown) of the land use in the segment and x; is the
number of hectares of classified land use in the segment,

observed by remote sensing. In order to estimate the mean
Ni

per segment, Y’:ﬁ 2y, of the y-values in each one of

i j=1
the ith small areas (i=1, 2, . . ., m), a simple random sample
of n sampling units or segments is selected from among

the N=X N total segments. Since N; is known, an estimate
i=1
Ni

of the total Y;= Yy is the estimate of the mean multiplied

=1
by N; and the ]standard error of the total estimator is N,
times the standard error of the mean estimator. The num-
ber n; of sampling units in the ith small area is a random
value ranging from 0 to n. For the selected sample both
numbers {(y;x;); j=1.2, . . ,ng i=12, .. .,m} can be ob-
served. Since the satellite data are a complete classification
of the landscape, it is possible to establish the x;-values for

each of the N segments of the whole population: {x;; j=1,2,
.. WNii=12, .. .m}. However, as will be seen, only the
Ni Ni
Ni N
totals, X;=Xx; or means X;=— Xx; for i=12, .. ,m, are

j=1 ij=1
required apart from the sample data {(y;.x;); j=1.2, . . .n;
i=1,2, .. .m}. Even if n;=0 for a given small area, it will
be possible to estimate Y; from X;.

BEST LINEAR UNBIASED PREDICTOR
(BLUP) ESTIMATOR

In order to estimate Y;, a model-based estimator is consid-
ered (Royall, 1970; Royall and Herson, 1973):
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Y=fy+(1—f)Y? (1)

where f;=n/N,is the sampling ratio, ij; is the sample average
of y;, and Y; is a predictor of the mean hectares per
segment in the remaining segments not included in the
sample.

The Model )

The predictor Y 7, in this case considered to be the Best
Linear Unbiased Predictor (BLUP), is based on the Linear
Mixed Model (Battese et al., 1988):

yij:ﬁl +ﬂ2xg'+vi+eij (2)

where f, and f, are unknown parameters with fixed values
(fixed-effects), v, are independent random variables of
mean zero and variance ¢, (random effects), and the ¢;
are independent random variables of mean zero and vari-
ance ¢,”. v; and ¢; are independent so that the variance of
uy=v;+e; is o;=0;+a; (o} and o7 are called variance com-
ponents).

Model [Eq. (2)] can be specified as a fixed-effect model
with autocorrelated errors instead of a mixed model:

=B+ Py tuy (3)

where f, and f, are unknown parameters with fixed values
(fixed-effects) and u; are random variables of mean zero
and covariance structure:

[oi+or  Oi=i'; j=)'
Cov(ug,v,u,-rjr)=|]73; Hi=i'; j7j' (4)
. Oii’

Substituting in Eq. (2) uz=v,+e;, it can be seen that
both models [Egs. (2) and (3)—(4)] have the same fixed
part and the same variance and covariance matrix, V, of
the random part: specific for the whole sample size n=

>ny; this matrix is V=0i]+ 7L, where [=diag{]..[5, . . ...
i=1

. ]} is a block diagonal matrix with [; being a square
matrix of the order n;, with all the elements equal to 1,
and [ being the identity matrix of the order n.

Models (2) and (3)—(4) are simple ways of taking into
account the fact that the errors u;=v,+e;=v;—f—fox; are
spatially correlated. This correlation is due to the spatial
autocorrelation of the ground data y;, on the one hand,
and of the remotely sensed data x;, on the other hand.
Many quantitative geographical texts refer to the positive
correlation of spatial variables, among them y;, as the first
law of geography [“Everything is related to everything, but
near things are more related than others” (Csillag and
Kabos, 1999)]. The spatial correlation of the remotely
sensed data x; (Labovitz and Masuoka, 1984; Webster et
al., 1989) is induced by instruments: The sensors measure
light reflectance from the Earth’s surface, but this light is
scattered so that reflectance from a pixel can be distributed
over several contiguous pixels on the image (Haining, 1991;



242 Ambrosio and Iglesias

Forster, 1980). The relationship between y; and x; could
be exploited more efficiently if this spatial correlation were
taken into account, which can be achieved in many differ-
ent ways. Cokriging is one of them (Dungan, 1998). How-
ever, this technique requires a large sample size for empiri-
cal semivariogram estimation of both y; and x; (Curran,
1988) as well as an empirical cross semivariogram of y;
and x; in order to assess spatial correlation as a function
of the distance between segments [see Tokola et al. (1996)
for other methods based on distance].

In this study the effect of spatial correlation is taken
into account by specifying in Eq. (4) that the errors u; are
positively correlated inside small areas and uncorrelated
between small areas. The correlation coefficient, p=a¥
(o2+0?) is considered to be the same for every small area.

The BLUP Estimator
The BLUP of Y?, based on the sample size n=n;, is

i=1

(Goldberger, 1962; Robinson, 1991; Cressie, 1991)

2

A

Y P =XrB+9; (5)

where

X7 =[1X7] where X} is the mean of x; in the remain-
ing (N—n,) segments of the ith small area, not
mduded in the sample,

ﬁ X'V X)"'(X"V_'Y) is the estimator of
B=1Bp.I",
where

X=[1x] where 1 is a column vector (nX1) of ones
and x the column vector (nX1) of the x; values
in the sample,

VZ'=diag(Vi' V3!, ... Vil .. V") is a block
diagonal matrix with
Vflzi_ Im‘)—g—fl(”,) 17, where I, is the
— o— (ho)—— ’

identity matrix of order n; and 1, is a column
vector (n;%X1) of ones,

ﬁizgi(yi—xz@ is the BLUP of v; (assuming that o7 and
o2 are known), where g;=a6%/[a>+(a%/n;)] and
x=[1x;], while x; is the sample mean of x;, in
the ith small area,
Y is the column vector (nX1) of the y; values in the
sample.
Replacing Y in Eq. (1) by that of Eq. (5) and ignoring
the sampling ratio (i.e., assuming that n; is small with re-
spect to N,;), the BLUP estimator is found:

Yi=<1—gf)Xi£+gi[yi X E B] (6)
[1X] and X, is the population mean of x; for the
ith small area. N

For the calculation of the estimates Y} it is not necessary

where X;=

to know x;; forj" (#j) from 1 to Ni—n;, but only their total X,
that is, the total land use area classified by remote sensing.

In general, the variance components ¢; and 7 are un-
known. For their estimation, several procedures have been
proposed (Khuri and Sahai, 1985). By Henderson method
3, the following are unbiased estimators of o7 and o7 (Prasad
and Rao, 1990):

62=¢"¢/(In—m—1),

ér=[a"d—(n—2)6%/n= (7)

where [Eq. (8)]
ne=n— tmce[ 2 nix'x, ] Sn[l=nsXX)"'E,  (8)
i=1 i=1
"¢ is the residual sum of squares of model (2) fitted by
Ordinary Least Squares and taking v; as fixed, that is, the
residual sum of squares of the Dummy Variable model,
and @"4 is the residual sum of squares of model (2) fitted
by Ordinary Least Squares and taking v;=0. The Dummy
Variable model is y;=u;+ fyx;+ey, with pg=(fi+v,). It is
assumed that the intercept 4; changes from one small area
to another: This assumption is specified by associating a
variable (Dummy) D; with each y; (i=1.2, . . .,m), the value
of which is 1 for every sample segment {rom the ith small
area and 0 for the remaining segments in the sample
(yy=mD\+usDyt . . +uDi+ .. +p,D,+Paxyte; Ui
i=1,2, .. .m; the variable D, takes “n” values, the n; values
corresponding to the segments from the ith small area are
equal to 1 and the remaining n—n, values are equal to 0).

Replacmg o’ and a2 by 62 and 62, the result is an estima-
tor Y, of the estimator Y;, called the Empirical Best Linear
Unbiased Predictor (EBLUP) estimator, and replacing
o? and o7 by 67 and 67 in Eq. (5), the result is an estimator
V of the variance and covariance matrix V.

THE ESTIMATOR OF THE MEAN SQUARED
ERROR OF THE EMPIRICAL BEST LINEAR
UNBIASED PREDICTOR (EBLUP) ESTIMATOR

Assuming that the distribution of v; and e; is normal, an
approximately unbiased estimator of thﬂe Mean Squared
Error of the EBLUP estimator, MSE (Y)), is (Prasad and
Rao, 1990; Ghosh and Rao, 1994)

MSE(Y,)=(1—f[h(62,6%) +hs(62,6%) +2hs(62,62)] 9)
where

hu62 Az>=gi(f)+<1— e ;V?"')

hy(62,62)=62XF —gx) A~ (X7 —gx)

ha(62.09) = L [(62Var(62) +(62Var(3?)



—26267Cov(62,67)]

where
A= { &T&z—gm"ﬂ}
i=1L=1
;= [1xy]
N A2
Var(67)=— (m—1)(n—2)(62)
nialn—m—1
+2n*&f&§.+nw(6§)2}
2(62)2
Var(6?) _ 260"
n—m-—1
oo 22
Cov(62,67)=——(m—1)Var(6?)
n%‘*
where
n=e=>n(1 1) +trace{(AT D nxlx)?.

i=1 i=1

m M

Because Al—EEJ x;, n#= may be simplified to
i=lj=
m m

neo=Sn1-E(X' X)" 5 =ne—n+ Sn?

i=1 i=1

RELATIVE EFFICIENCY OF THE EMPIRICAL
BEST LINEAR UNBIASED PREDICTOR
(EBLUP) ESTIMATOR

Direct Expansion Estimator
The Direct Expansion estimator is the design-based esti-

mator defined by ;= Ey /n;. It does not make use of the

remote sensing data, only of the sample information on ;.
The expected variance of this estimator is given by (Hansen
et al., 1953, Vol. 2, Chap. 4, Sec. 17]

V<yi):(1_ﬂS?/<nPi>+QiS;Z/(nPi)Z
N;
where P,.=N/N, Q;=1—P, and SZ_E(j —Y)%(N;—1).
=1
Assuming that the variance Wlthln small areas S, is the

same in every small area and equal to S, it can be estimated

m m

by 82=3 (n,—1)s¥(n—m), where sz—z(y,j y)"(ni—1).
i=1 . =
An estimator, V(y,), of the Varlance of the Direct Expan-
sion estimator, V(y;), can be defined replacing S7 by S2.
The relative efficiency of the EBLUP estimator with re-
spect to the Direct Expansion estimator would be esti-

mated by V(y)/Z\A/I SE(Y,).

The Survey Regression and the Synthetic
Regression Estimators

The estimator defined in Eq. (6) belongs to a class of
estimators of the form Y (6)=X; P+38,(y;i—x; B), where J is
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an estimator of ff and ¢, is a nonnegative constant (Harter,
1983). This class is interesting because the most usual
estimators are elements of the class For = ﬁ and 6,=g,
the BLUP estimator is defined in ( For [)’ ﬂ and 6,=0,
the Synthetlc Regression estimator Y =X [)’ is the result.
Forﬁ ﬂdndé 1,Y(1)= yit X Eﬁlsthe Survey Regres-
sion estimator.
. The Mean Squared Error (MSE) of the estimators
Y;(0) and Y;(1) can be expressed as a function of the Mean
Squared Error of the BLUP (Harter, 1983), MSE(Y)):

2

MSE[Y,(0)]= MSE(ﬁ)—I—g?{O-%_FJ"_

n;

xi(XTVIX)lxiT}

MSE[Y(1)] =MSE()A/i)+(1—g?){a§+ﬁ—m(XTV_1X)_lxiT}
| (10)

These MSE can be estimated replacing MSE(®Y)) by
MSE ( Jand Vby V V. The relative efficiency of the EBLUP
estimator with respect to the Synthetic Regression and the
Survey Regression  estimators Wlll be estlmated by
MSE(Y,(0))/MSE(Y,) and MSE(Y(I))/MSE(Y), respec-
tively, and with _respect to the Direct Expansion estimator
by V(y VMSE(Y)). The relative efficiency of the Survey
Regressmn estimator with respect to the Direct EXpdﬂSlon
estimator will be estimated by REFV@,-)/MSE(Yi(l)).

Note that the estimator in (6) is a weighted mean of
the extreme estimators Y,(0) and Y,(1), the weights being
g and (1—g;), respectively. When ¢7=0, then g;=0 and the
BLUP is reduced to the Synthetic Regression estimator
Y,(0) and its mean squared error is estimated by Eq. (12)
with 67=0. When ¢:>0, then g0 and the BLUP estimator
lies between the extreme Synthetic Regression estimator
and the Survey Regression estimator, approaching one or
the other depending on p=07/(c:+a?) (the correlation coef-
ficient inside small areas) and on the sample size n;, When
a2 is small with regard to (o2+0?2) (i.e., p is small), then g
tends to be low, except when n, is very high so that on the
basis of (10) MSE(Y,(0))/MSE(Y,) tends toward 1 and the
Synthetic estimator tends to be as efficient as the BLUP
estimator. When ¢ is large with regard to (o;+0?) and n,
is high, then g; is far from zero and the BLUP estimator
tends toward the Survey Regression estimator, Y,(1) [i.e.,
on the basis of (10), MSE(Y,(1))/MSE(Y,) tends toward 1].

The null hypothesis g;=0 versus the alternative hy-
pothesis ¢7>0 can be tested using the statistic:

S(za) |
— e (1)
T sz

i=lj=

/Ilm =

where i is defined in Eq. (7) and n=n/m. This statistic
is dlstrlbuted asymptotically as x> with one degree of free-
dom (Judge et al., 1985).
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NONSAMPLED AREAS

In small areas where n;=0, the Synthetic Regression esti-
mator is used as the estimator of Y;, and the mean squared
error is estimated by

MSE(Y)=X,(X'V~'X)"'X"+6? (12)

RELATIVE EFFICIENCY GAINED FROM
REMOTE SENSING DATA

A measure of the gain in precision due to remate sensing
data is the following REf =M SE(Yi)g,Z/Z\ZI SE(Y,), where
MSE(Y))is as defined in Eq. (9) and MSE(Y;)M is the Mean
Squared Error of the EBLUP estimator of Y, obtained
using the same sample of segments and based on a model
ignoring x;: y;=p+v;+e; in (2).

The EBLUP estimator of Y; and the estimator
M SE(Y)),s, based on the latest model, are obtained as spe-
cific cases of that obtained from model (2), substituting
X=1, p=p, /3231, X=1, x=1, x;=1 and also replacing
(n—m—1) by (n—m) and (n—2) by (n—1).

A CASE STUDY

The basin of the Duero river, which flows through Spain
and Portugal into the Atlantic Ocean, has been taken as a
case study. In order to manage the water resources for
irrigation, the basin is divided into small areas called “irriga-
tion zones,” following agricultural and administrative crite-
ria: The number of zones in the Spanish part of the basin
is m=53. Estimates of irrigated crop acreage in each one
of these “zones” are required for the main crops (corn,
sunflower, and sugar beet) in order to estimate the water
irrigation requirements in each “zone.” The estimates are
to be based on ground and satellite data. As a sampling
frame the UTM (Universal Transversa Mercator) grid is
used. The segment, or sampling unit, is a squared cell of
500 m X500 m, that is, 25 hectares. Each cell is identified
by the UTM coordinates in the southwest corner. A random
sample of n=158 segments is selected from among the
whole population. The number of segments in the sample
from a small area or “zone” ranges from zero to 17, the
average being 4.

The Estimates

Table 1 shows the estimates for irrigated corn crop acreage,
computed by using expression (6) and its standard error
[square root of the estimated mean squared error of the
estimator computed by using Eq. (9)] as well as the stan-
dard error of the remaining estimators. For unsampled
small areas, Table 2 shows the Synthetic Regression esti-
mates and their standard error [square root of the estimated
mean squared error of the estimator, computed by using
Eq. (12)].
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Table 2. Estimates for Irrigated Corn in Unsampled
Small Areas

Geographical ~ Estimate — Standard
Small Area Surface (ha)  (ha/segm.) Error
Adearregada 601 1.58 0.72
Ejeme Galizancho 738 1.70 0.72
Guma 4157 0.98 0.72
Olmillos 233 0.98 0.72
Villamayor 596 1.18 0.72
Zorita 390 1.12 0.72

Relative Efficiency between Estimators

The EBLUP estimator is the most efficient of the four
estimators. The worst estimator is the “Direct Expansion
estimator.” The relative efficiency of the Synthetic and the
Survey regression estimators with regard to the EBLUP
estimator depends on g [Eq. (5)], which in turn depends
on the ratio between the variance components ¢; and o7
as well as on the sample size n,. Table 3 shows the estimates
of these variance components for the three crops consid-
ered. The values of 4,,, observed when using Eq. (11) are
6.9713 for corn, 5.6046 for sugar beet, and 18.8368 for
sunflower so that o} is significantly different from zero
[with a significance level of 5% for sugar beet (545(1)=23.84)
and 1% for corn and sunflower ([y3g(1)=6.63)]. Hence,
on the basis of Eq. (5), g is different from zero (when
n;#0). The ratio 6%/(62+63) is 0.08 for corn and sugar beet,
but 0.21 for sunflower. Hence, g, is near zero for corn and
sugar beet, and on the basis of Eqgs. (6) and (10), the
Synthetic estimator is nearer the EBLUP estimator than
the Survey Regression estimator, except when n; is high
(in Paramo, where n,=17, the Survey Regression estimator
outperforms the Synthetic Regression estimator). For sun-
flower g, is far from zero and increases when n; increases
so the Survey Regression estimator is nearer the EBLUP
estimator than the Synthetic Regression estimator, except
when n;<4 (or g<0.5).

The relative efficiency, RE,, of the remote sensing data
ranged i) from 1.51 and 3.26 for corn, with the average
being 2.25, ii) from 1.17 and 2.38 for sunflower, with an
average of 1.58, and iii) from 1.91 and 4.13 for sugar beet,
with an average of 2.79. These figures are of the order
found for large areas (Ambrosio et al., 1993). The differ-
ences between the crops are explained by the fact that the
spectral signatures of corn and sugar beet crops are more

Table 3. Estimates of the Variance Components and (within
Brackets) of Its Standard Error

Variance Components

op G
Crop (Standard Error of 62)  (Standard Error of 62)
Corn 0.4725 (0.4540) 5.5944 (0.6706)
Sugar beet 0.5012 (0.4427) 5.4780 (0.6571)
Sunflower 0.7511 (0.3449) 2.7614 (0.3312)
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specific than the spectral signature of sunflower, which is
usually confused with ploughed land ready for sowing.

It is suggested to measure the gain due to the remotely
sensed data using a given estimator, the EBLUP estimator,

as indicated above: REf= MSE( s +/MSE(Y). Table 1
shows this measure for corn: it ranges from 1.91 to 10.41,
with the average being 5.63. (For sunflower it ranges from
1.20 to 1.56, with the average being 1.37, and for sugar
beet from 1.31 to 2.04, with the average being 1.62). An-
other index proposed to measure this gain is n=n,RE},
where n/ is the segment sample size required when satellite
data are not used to achieve the same precision as with n,
segments and satellite data.

For the estimation of corn acreage without remote sens-
ing data, it would, on average, be necessary have a sample
size of nf=5.63n; segments in order to achieve the same
precision as with n; segments and remote sensing data
(nf=1.37n, for sunflower and n?=1.62n; for sugar beet).
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APPENDIX

Numerical Example

Four small areas were considered: 1, 2, 3, and 4. The
segment sample size in each small area is 1, 4, 2, and
1, respectively.

The Data

The required data are shown in Tables A.1 and A.2. Table
A.1 shows the ground, y;, and the remotely sensed data,
x;, in each sampling segment. Table A.2 shows the size of
each small area (number of segments, N;) and the mean

Table A.1. Sample Data

Small Area Uy Xy
1 1.04 0.10
2 4.56 0.90
2 3.96 0.00
2 7.20 4.78
2 4.19 0.55
3 3.55 7.44
3 1.28 5.70
4 2.05 0.30




Table A.2. Population Data

Number of Small Area Mean per
Small Segments Segment Classified by
Area (N,) Remote Sensing (X,)
1 12 1.05
2 71 1.91
3 131 4.23
4 14 15

per segment of the surface classified by remote sensing as

the crop type, X

Verification of the Model Assumption

Using data from Table A.1, the value of the statistic defined
in Eq. (11) is calculated. The vector of ordinary least square
(OLS) residuals of model (3) is

a=Y—-X(X"X)"'X"Y
where:
Y=[1.04 456 396 720 4.19 355 128 2.05]"

|1 1 1 1 1 1 1 1
— 10.10 0.90 0.00 478 055 7.44 570 0.30

So that:

G=[—2.1952 12427 0.7351 3.4841 0.9086
—0.4392 —2.5304 —1.2057]"

Q=3 3 a=27.9176
i=1j=1

E(an) =55.6744

i=1\=1

Since the sample size is eight, n=8, and the number of
small areas four, m=4, the average sample size per small
area is two, n=8/4=2, and replacing n and n in Eq. (11),
the result is 4,=3.9541. Since yjg5(1)=3.84, the null hy-
pothesis, 67=0, is rejected and the model assumption ac-

cepted.

The Estimates

In order to estimate the mean per segment using (6),
estimates of f and g; are required. Estimates of o7 and
o2 must be calculated, using (7). The vector of OLS residu-
als of the Dummy Variable model (2) is

e=Y—X(X'X)~'X"Y

S = O
O = O
S = O
O = O
_—o O
—_—o O

0 0 0 0 0 0

i}
[
[

10
10 0.90 0.00 478 0.55 7.44 5.70 0.300]

01
do
x=Uo0
0o
(0.1

so that
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[0.0000 0.0740 0.1468
0.4847 —0.4847 0.0000]"
0.5328

—0.1864 —0.0344

é

é'e

x,=[1 x;], where ¥; is the sample mean of the x; from Table
A.1: 0.1, 1.5575, 6.57, and 0.3, for the small areas 1, 2, 3,
and 4, respectively,

4(X'X)™'xl is equal to 0.2142, 0.1382, 0.3915, and 0.1998
for the small areas 1, 2, 3, and 4, respectively.

Hence, n.=3.8088, ¢2=0.1776 and ¢2=7.05.

The estimates of g are §,=0.9754; §,=0.9937;
2,=0.9876; and 3,=0.9754 for the small areas 1, 2, 3 and
4, respectively. The estimates of V' are

Vi1=0.1385;

0 ooold 1110
. 1 1oo0 ¢gg9g937 L1110
= 0177600100 4501776 1 11 10
(00010 1110

[] 4.2318 —1.3988 —1.3988 —1.3988[]
[J-1.3988 4.2318 —1.3988 —1.39880]
~[31.3988 —1.3988  4.2318 —1.3988[]
[J-1.3988 —1.3988 —1.3988 4.23180J

1 40 09876 1[0
01776 [0 1] 2x0.1776 [} 17

(7—1—

Y3 -

0 2.8502 —2.78047
_D—2.7804 2'85O2D

and V;1=0.1385, for the small areas 1, 2, 3, and 4,
respectively.

Using Z)’=(XTLA/7]X)7‘(XTQ7]X) where X and T are as above
and V'=diag(Vi' V5! V5! V)=

0.0000 0.0000]
0.0000 0.00001]
0.0000 0.0000L]
0.0000  0.0000 0.0000[]
0.0000  0.0000 0.0000]
2.8502 —2.7804 0.0000[]
2.8502 0.0000[_]
0.0000 0.1385[ ]

|341385 0.0000  0.0000  0.0000  0.0000
QDOOO 4.2318 —1.3988 —1.3988 —1.3988
BO()OO —1.3988 4.2318 —1.3988 —1.3988
[d.0000 —1.3988 —1.3988 4.2318 —1.3988
[d.0000 —1.3988 —1.3988 —1.3988 4.2318
[d.0000  0.0000 0.0000 0.0000 0.0000
[4.0000  0.0000 0.0000 0.0000 0.0000 —2.7804
[[4.0000  0.0000 0.0000 0.0000 0.0000 0.0000

0.0000
0.0000
0.0000

the estimate of f is calculated:

_ k[ 0.0954[]
5.0 [0.71950

lf\eglacing in (6) gi b}’ gi> Y,:(l—gi)([fﬁﬁzzﬂgf[yﬁ
Po(X;—x;)], the estimates of th£e mean per segment in egch
small area are calculated: Y,=2.4462; Y,=5.2137; Y,=
0.7736; and Y,=2.8952 for the small areas 1, 2, 3§ and 4,
respectively. The estimates of the total are Y,=12X
2.4475=29.3544, Y2=7}X5.2137=370.1727, Y;=131X
0.7736=101.3416 and Y,=14X2.8952—40.5328 for the
small areas 1, 2, 3, and 4, respectively.

>
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The Mean Squared Error Estimate

From Eq. (9), the three components of the mean squared
error (MSE) of the estimator of the mean per segment
are calculated.

The first component of the estimate of the MSE is
hy1(62,62)=0.2629, h,(62,62)=0.059, h5(62,6%)=0.0954 and
h14(62,67)=0.2494 for the small areas 1, 2, 3, and 4, respec-
tively.

For the second component, the value of the vector
X7 =[1 X?] where X7 =(NX,—nx,)/(N;—n,), is required. Us-
ing data from Table A.2: X#=2.2273; X;=1.9310; X¢=
4.1937 and Xi=1.5923, for the small areas 1, 2, 3, and
4, respectively.

In order to calculate the matrix A, it is necessary to
calculate the matrix xjx;, where x;=[1 x;], where x; is given
in Table A.1. For small area 1:

o0 0100
L= 10 0.010

For small area 2:

N} 0.900J 0 0.000J
L= 90 08105227900 0.000]

N} 478 0O 0 055 [0
“[78 228484028~ [0 55 0.30250]

for each of the four sample observations. For small area 3:

a 744 [J 0 5.700J
Uik =[F 44 5535360522370 324900
And for small area 4:

0 0300
hXn =19 30 0.090]

n;

Hence, X xfx; is

j=1

i} 0.100]
[0.10 0.01[]

for small area 1; for small area 2 it is

4 6.23 [
[6.23 23.96060]

for small area 3 it is

L2 13.14 U
[13.14 87.8436[]

and for small area 4 it is

1 0.300]
[0.30 0.090]

For each small area, x/x; is also calculated, where x;=

[1 x;]. For small area 1, x'x; is

a 0.101]
[0.10 0.01[]

for small area 2 it is

a 1.55750]
[1.5575 2.4258[]

for small area 3 it is

a 6.57 [
[6.57 55.164901

and for small area 4 it is

1 0.300]
[0.30 0.09[]

Hence, for small area 1, Yxjx;—gnalx; is
=1

[0.0246 0.0025[]
[0.0025 0.0002[]

and is equal to

[0.0252 0.03920] [0.0248 0.1629[] [0.0246 0.0074[]
[0.0392 14.3188071 [0.1629 2.5843[1 [0.0074 0.0022[1

for the small areas 2, 3, and 4, respectively.
The matrix A is the sum of these four last matrices,
each corresponding to a small area:

[J10.3582 —0.12990]
T3-0.1299  0.0608[]

[0.0992 0.21200] dA
~[0.2120 16.9055012"

For small area 1, the second component of the mean
squared error is hy(67,67)=0.0477 and hy(67,67)=0.0015,
ho3(62,62)=0.0584 and h,.(62,62)=0.0179, for the small ar-
eas 2, 3, and 4, respectively.

For the third component, the values of n,, are needed
as well as the estimates of the variances, Var(6?) and
Var(62), and the covariance, Cov(62,62): n..=17.8088,
Var(62)=0.021, Var(6)=123.3710 and éov(&f,&%)—
—0.0165. For small area 1, the third component is
h3(62,67)=0.0132. In the same way, the result is
hyp(62,62)=0.0009; h4(62,62)=0.0034 and hy,(62.62)=
0.0132 for the small areas 2, 3, and 4, respectively.

Finally, for small area 1, the mean squared error 0£ the
estimator of the mean per segment iss MSE(Y,)=

0.3370 and the standard error \/M SE( Yl) 0.5805. In the
same way there are standard errors, \/MSE (Y,)=0.2460,
for small area 2, \/MS'E(i)ZOAOOQ for small area 3 and
\/M §E(§4)=0.5419 for small area 4. The standard error of
the total estimators are \/MS'E(?QI12><0.5805=6.9660;
VMSE(Y,)=71x0.246=17.7216; VMSE(Y,) = 131X0.4009=

55179: VMSE(Y,)=14X0.5419="7.5866 for the small areas
1, 2, 3, and 4, respectively.




