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Introduction



This chapter introduces meta-analysis concepts and procedures to scholars interested in family planning program effects. Meta-analysis is a method of summarizing findings from a set of studies. In the first section we define and illustrate it. Next, we place meta-analysis in a historical context and describe how it has been used to summarize the findings from family planning program evaluations. We discuss problem formulation and how to identify, summarize, and evaluate studies. We then present selected statistical techniques used in meta-analysis. For illustration we draw on our in-progress synthesis of studies that evaluated the impact of family planning information, education, and communication (IEC) programs. 


Definition and Illustration of Meta-Analysis




Meta-analysis is a method of research synthesis that aggregates effect sizes from different studies with a common research question. We illustrate this definition by describing an hypothetical meta-analysis. Say we want to know how much mass media campaigns influence contraceptive prevalence. Rather than carrying out a new study, we attempt to answer the question with findings from studies that already have been conducted. Then we carefully identify the criteria for including studies in the analysis, specifying, for example, the research designs and dependent variables that make a study eligible. 


Next we identify the studies. To avoid biases due to our preference for studies with findings we like and the tendency of journals to publish studies that reject the null hypothesis, we conform to a principle of meta-analysis that a sincere attempt be made to include all the studies that meet our pre-determined criteria. We expend considerable effort to identify the 50 studies that have been conducted. After obtaining the reports of these 50 studies, we eliminate five that upon closer examination do not meet our criteria for inclusion or do not present the data we need to statistically summarize the findings. We then conduct a content analysis of the 45 studies, briefly summarizing the major characteristics of each.  

For each study we calculate an effect size for the association between the mass media campaign and contraceptive prevalence. We also compute an average effect size across all studies and from this draw conclusions about how strongly the evaluated programs influenced contraceptive prevalence. We also examine the variability of effect size across studies and selected correlates of effect size.  

As the hypothetical meta-analysis suggests, meta-analysis differs substantially from the way we usually summarize research findings on a given topic. Typically we are less persistent in our attempt to obtain all the studies on a topic, and rarely do we base our conclusions on effect sizes that we systematically compute from the findings. This example also illustrates that meta-analysis shares many features with primary research. A fundamental difference between the two is that primary research studies individuals, communities, and other units whereas meta-analysis studies research findings.

History of Meta-Analysis and its Application to Family Planning Program Evaluations



Meta-analysis can be traced to the early 1900s when Pearson averaged findings from different samples, and to research by other statisticians and natural scientists in the 1930s (Cooper and Hedges 1994). Until the mid-1970s, when Glass first used the term "meta-analysis," social scientists rarely combined effect sizes across studies, preferring less formal narrative approaches to summarizing research literature. Since then meta-analysis has become much more popular in the social sciences, and it has been applied to topics and questions ranging from the effectiveness of psychotherapy (Smith, Glass and Miller 1980) to explaining adolescent contraceptive use (Whitley and Schofield 1985-86) and estimating the impact of drug prevention curricula (Ennett et al. 1994, Tobler 1992).

The maturation of meta-analysis is further evidenced by the emergence of "meta-analysis" as a key word in major bibliographic databases and by the appearance of The Handbook of Research Synthesis, a set of comprehensive chapters written by many of the pioneering scholars of meta-analysis methodology (Cooper and Hedges 1994). The Handbook guided application in this chapter of meta-analysis to family planning program evaluations; we recommend it to those who wish to consider meta-analysis more completely than it is here.  

Meta-analysis has largely been ignored as an approach to synthesizing the findings of family planning program evaluations. Indeed, only one meta-analysis of studies of family planning program evaluations has been published. Bauman conducted an exhaustive search for published and unpublished reports of family planning program evaluations that used randomized experimental designs and reported outcome findings up to 1991 (Bauman 1997). He identified 16 studies, of which 14 reported data required to calculate study effect sizes.  From these 14 studies he computed an overall effect size of r2 = .0064 for the relationship between program and program outcome. The meta-analysis findings were assessed in several contexts, including the role of organized family planning programs in fertility reduction and the dearth of family planning program evaluations that use the most definitive research designs. 

Problem Formulation




The meta-analyst must identify and carefully formulate the research questions to be addressed. In the figurative case of  family planning IEC programs, research questions that might be considered for meta-analysis include: 1) how much do IEC programs increase family planning clinic attendance and contraceptive prevalence, 2) does the magnitude of effect vary by whether couples or individuals are targeted, the medium through which messages are delivered, the number of months between program and follow-up, or the decade of program implementation, and 3) is the size of program effect influenced by the quality of the research design used for evaluation or whether the study was published?  

Many factors can mold the process of formulating the problem to be addressed. These include direction provided by behavioral science theory, perceived importance of what can be learned from the analysis, preliminary assessment of the adequacy of the research on the chosen topic, the extent to which satisfactory answers can be derived from this process, the meta-analytic methods to be used, and the resources needed and available for identifying the studies. During the process of problem formulation, decisions must be made about the types of programs to be considered and the variables that will be included. As is the case for most research, the research questions will be refined and in some cases more will be added as the meta-analysis proceeds. Similar to any research endeavor, answers to the questions will be limited by the availability of data. 

It is essential to determine early in the process whether enough primary studies with acceptable research methods have been conducted for a meta-analysis to be worthwhile. This can often be accomplished through an informal inspection of the literature and consultation with experts. By definition, the findings of at least two studies must be available for a meta-analysis, but it is likely the meta-analyst will want many more studies to proceed. We considered the 14 studies in our meta-analysis of evaluations that used randomized experiments to be minimally adequate, and many analyses we considered potentially worthwhile were precluded by the small sample. Otherwise, we would have liked to determine if program effects varied by program type, dependent variable, decade of study, and other factors (Bauman 1997).


Our current meta-analysis work began with the goal of identifying all studies that used quasi-experimental and true experimental designs to evaluate family planning programs in developing countries. We included quasi-experiments as well as true experiments because we already knew that the number of randomized experiments is small (Bauman 1997). The resultant data base was expected to address a wide variety of questions fundamental to family planning programming and policy. This proved to be an ambitious undertaking which our resources did not match, so we narrowed our scope to a meta-analysis of evaluations of family planning IEC effects. We expect that such a study will be valuable for several reasons: IEC interventions are widely accepted as essential components of successful family planning programs, the findings from such studies have not been systematically synthesized, and there appear to be a sufficient number of studies to answer various important questions.  

Meta-analysis requires careful consideration of the criteria for study inclusion. An early concern in our meta-analysis of IEC interventions was to determine what would qualify as IEC. A detailed report on IEC programs was adopted for that purpose, and we decided to include all studies in developing countries that met the specifications of the report (Bertrand and Kincaid 1996). We also decided to limit dependent variables to fertility and its determinants, such as family planning knowledge, attitudes and practices.  

Only studies that report findings and present the data necessary to determine effect size can be included. The findings have to be reported in writing but can be published or unpublished. We are including only studies designed as randomized experiments or quasi-experiments with comparison groups that have been selected simultaneously and formed for the evaluation. We use quasi-experimental studies only if they record baseline indicators of the dependent variables so that pre-program differences can be controlled. To determine IEC impact, we are eliminating study designs in which IEC and service delivery effects cannot be separated, such as those in which the treatment group received both IEC and contraceptive services and there was no comparison group with IEC and no contraceptive services.  

In addition to determining overall effect size for the studies chosen for meta-analysis,  review of the database of studies will reveal additional questions for study. For example, given enough studies that meet the criteria for inclusion, the effect sizes of studies with different program types, dependent variables, and other varying characteristics can be examined.

Data Collection: Identifying the Literature 


A principle of meta-analysis is that the researcher must make a serious attempt to identify all the primary studies that meet the criteria for inclusion. Meta-analysts are expected to avoid biases that would occur if they limited their choice to readily available studies or to studies with findings that are compatible with the preferences of the meta-analysts or others. Meta-analysts pursue unpublished studies with as much vigor as published ones because research has suggested that excluding unpublished studies can artificially inflate effect sizes (Begg 1994). Even though it is unlikely that even the most careful literature search effort will yield all the relevant studies, exhaustive coverage remains the goal of meta-analysis. The meta-analyst is expected to thoroughly describe the procedures used to identify studies so that the thoroughness of coverage can be assessed by others.  

The validity of the meta-analysis is assumed to be directly related to "recall," the percent of studies obtained among all that meet the selection criteria. Satisfactory recall most likely will depend on the use of multiple sources for identifying studies. In our on-going meta-analysis of IEC program evaluations, we rely largely on three of the five modes for identifying literature described by White (1994): 1) "footnote chasing" -- examining references in such sources as journal articles (including review articles), unpublished papers, and books, 2) "consultation" -- asking experts in the area to identify studies for us, and 3) subject index searches. We relied less on 4) "browsing" library shelves (although we did examine journals known to publish family planning program evaluations), and on 5) "citation searches. " We felt that books would be readily identified through other means and recognized that primary researchers in this area often do not cite evaluations conducted by others.  

Identifying research literature through computer searches of databases can yield studies used in a meta-analysis. POPLINE is a computerized database of reports in the population field that includes family planning program evaluations. In addition to books and articles published in journals, POPLINE includes literature that is difficult to locate, such as meeting presentations, workshop proceedings, and final reports to granting agencies. POPLINE also includes abstracts of many of the reports, and copies of the full reports are available from those who administer POPLINE.  

Computerized databases can be useful and at first glance may appear to be all that is needed. However, they should not be used exclusively because key search words and their combinations will most likely leave a significant number of studies unidentified. A problem in identifying literature for meta-analysis, particularly through databases, is that many more studies than meet the meta-analyst’s criteria for inclusion are likely to be selected. This substantially increases the time and expense involved because of the effort required to eliminate studies that do not meet inclusion criteria.

Evaluating and Summarizing Individual Studies

Judging study quality is central to two aspects of meta-analysis: 1) determining whether the quality of a study is adequate enough to include the study in the meta-analysis and 2) relating quality and effect size for included studies. Some meta-analysts contend that studies suffering from common and serious methodological flaws be excluded. Most believe that, when the set of studies available permits, study quality should be rated and then correlated with effect size so that the impact of study quality can be assessed.

The quality of a study is defined by its relevance and acceptability. Relevance refers to a study’s pertinence to the problem at hand, theoretical basis, or appropriateness of the time period that it covers, while acceptability refers to a study’s methodological adequacy or completeness in reporting the necessary information (Wortman 1994). Whether the research design is a randomized experiment or quasi-experiment is a quality consideration for many meta-analyses of evaluation studies, with the schemes by Campbell and Stanley (1963), Cook and Campbell (1979), and Chalmers and colleagues (1981) often used to assess design quality.

Meta-analysis typically involves variables in addition to those that describe a program, the dependent variables, and the quality of primary studies. Specifically, there often is interest in determining whether effect sizes varied for studies involving different types of subjects, program types, or study year. Are effect sizes larger for IEC evaluations involving couples than for those involving only women, or for those that target clinics versus those that target more general populations? How the effect sizes of recent studies compare with those of older studies addresses the concern that older programs might have been implemented less efficiently than more recent ones and therefore that including older studies underestimates the impact of IEC programs. Thus, the meta-analyst often will include variables that describe various characteristics of the studies, some of which will emerge as the studies are identified. 

The variables we are coding for our meta-analysis of IEC programs are listed in Table 1.


Table 1  Study characteristics

Characteristic
Explanation

Program location
name of continent, country, province, district, city/village

Author(s) and year of report


Groups compared
type of IEC intervention, control

Research design
randomized experiment or quasi-experiment

Units assigned to program
e.g., individuals or geographical area

Dates of study
1) baseline, 2) program, 3) endline/follow-up

Study units
e.g., married women of reproductive age, couples, adolescents

Dependent variables
family planning attitudes and practices

Results
evaluation findings

Author conclusions


As studies are identified and summarized, we include a description of each study in a grid.  The  characteristics shown in Table 1 serve as column heads and the individual studies are listed down the page. This provides a convenient way to systematically abstract and organize information from studies and to learn about the studies as the database evolves.  

Like primary researchers, meta-analysts have many additional concerns, including the reliability of coding information from primary studies, how missing data are to be handled, dealing with data bias, and the efficient computerization of data. 


Statistical Techniques

Statistical analysis in meta-analysis usually involves at least three steps: 1) computation of a single summary measure of program effect for each study, 2) testing homogeneity of effects across studies, and 3) combining the results of studies. Each of these three steps is described below. Meta-analysis also often involves a fourth stage not illustrated here: examining how effect sizes vary by study characteristics, such as methodology used and type of dependent variable. More details on these statistical techniques are found in Cooper and Hedges (1994).

Computing an effect size for a study

Several different statistical techniques can be used to compute an effect size for a study. Measures belonging to the d family often are used to provide a standardized index of the difference in the outcome measure for different levels of treatment. This can be calculated as the difference in means of treatment and control groups divided by the pooled standard deviation of the groups. Hedges and Olkin (1985) suggested an unbiased estimator of effect size: d = C(YI-YC)/

, where C is a bias correction factor depending on the sample size N, C = [1-3/(4N-9)]/(N-2), YI and YC are the means of the intervention and control groups, and 

 is the pooled standard deviation of the two groups. The variance of this unbiased effect size is calculated as:

var = 

 ,

where N = NI  + NC .The standardized difference, d, can also be converted from a measure of association. For example, d is the square root of a Chi-square statistic ((2) with one degree of freedom, which can be converted to a measure of strength of association through a simple transformation (Cooper and Hedges 1994).


For dichotomous outcomes, we let PI and PC denote the proportions of intervention and control subjects showing the desired outcome. Several summary measures belonging to the d family based on PI and PC or its transformation are listed in Table 2.  

Table 2  Summary measures belonging to the d family
Measure
Variance

PI ( PC
PI (1 (PI)/NI  +  PC (1 ( PC)/NC

arcsin(PI) ( arcsin(PC)
1/NI + 1/NC

Probit (PI) ( Probit (PC)


 a

logit (PI) ( logit (PC)




a  Zp = standard normal value corresponding to p


Several observations may elucidate the summary measures in Table 2. First, the squares of all the measures in the table, when divided by the corresponding variance, will be Chi-squares with one degree of freedom. Second, the variance formula given in the table assumes that the intervention and control groups are independent. However, if the response variable is measured on the same cases before and after the intervention, then the two P measures will not be independent. In such situations appropriate modifications must be made in the variance calculation. For example, if N women are observed before and after an intervention, the correct variance will be 

. In the case of logit transformations, the appropriate variance will be 

.


The third point is that the difference in the logit function is simply the log odds ratio. The anti log of the difference is the odds ratio. The variance of the odds ratio is obtained by multiplying the variance of log odds by the square of the odds ratio. We emphasize the odds ratio in this chapter because 1) family planning program evaluations often involve categorical independent and dependent variables, 2) the odds ratio is commonly used and understood, 3) logistic regression models can be used to adjust for covariables, test for interactions, and compute a single program effect size and its variance when multiple interventions are involved.


Fourth, sometimes the rate ratio PI/PC or its logarithm (log PI - log PC) will be used as a measure of interest. The rate ratio is also interpreted as relative risk. Under certain conditions, the odds ratio is merely an approximation to the relative risk (Fleiss 1981).


Several examples demonstrate effect size construction. The example studies presented below evaluated IEC programs and measured contraceptive behavior as discrete outcomes. The studies vary in design and end point considerations. Although we usually set up a comparison between treatment and control, for the principles presented above and the examples below, the comparison can be between groups that received different types or levels of programs. The analyses must generate a single effect size for a study, although multiple effect sizes can be computed, for instance, when more than one type of intervention is evaluated or when the outcome variable is assessed more than once after the program has ended. Some variations are not represented by our examples. 


Example 1: Sayegh and Mosley (1976) reported results from a randomized experiment in Lebanon to evaluate the impact of a hospital-based postpartum education program on contraceptive acceptance.  We used these data to compute the effects sizes presented in Table 3.

Treatment
Sample Size
% Acceptance

Intervention
219
33.79

Control
222
18.02

Table 3  Effect sizes
Type
Outcome
Variance

PI - PC
.1588
.001687

arcsin (PI) - arcsin (PC)
.1635
.009070

probit (PI) - probit (PC)
.4920
.011554

logit (PI) - logit (PC)
.8420
.050902


From Table 3 we convert the logit difference to an odds ratio by exponentiation of the logit difference. Similarly, a confidence interval for the odds ratio is calculated by exponentiation of the upper and lower confidence interval values of the logit difference. In this example the calculated odds ratio is 2.322 with a 95% confidence interval of [1.492, 3.613]. Because the confidence interval does not contain one (1), we also conclude that the program has a statistically significant effect.


Example 2: In Hong Kong, Chan (1971) conducted a randomized experiment to determine whether home visits to IUD acceptors would increase IUD continuation rates. His paper provided sample sizes and the cumulative failure rates due to medical reasons for ordinal months 1, 2, 3, 6, 9 and 12 in which IUD use discontinued. Chan concluded there were significant differences after the third month that disappeared by month 12.  


There are several ways to obtain a summary measure for these data. Treating each available time point as a stratification variable, an extended Mantel-Haenszel statistic of common odds ratios can be computed (Stokes, Davis and Koch 1996). For this example, the odds ratio is 0.829 with a confidence interval of [0.686, 1.002]. One can also obtain a relative risk value by simply fitting a proportional hazards model (Cox 1972) involving one covariate (intervention versus control). In this case, the estimated relative risk is 0.912 with a confidence interval of [0.760, 1.094]. None of the summary measures constructed shows statistical significance. With wide use of the survival analysis techniques such as hazards regression, the most likely available summary measure will be estimated relative risk value.


Example 3: The University of Ghana (1979) reported a study comparing IEC treatments aimed at improving family planning knowledge, attitudes and use in a rural area near Accra. Among the interventions added to the standard Ministry of Health services in place were health education, family planning services and comprehensive health care (Intervention A), health education and family planning services (Intervention B), and family planning services only (Control). The following results were extracted from the paper:

Treatment
Sample Size
Proportion of Couples 

Accepting Contraception

Intervention A
2691
.3910

Intervention B
2421
.3106

Control
3592
.1423


In a study involving multiple treatments, there are a number of choices for developing a summary measure. One method is to choose a primary comparison of interest, as in this study, where one of three possible comparisons can be selected: Intervention A versus Control, Intervention B versus Control, or Intervention A versus Intervention B. With only one comparison chosen, the problem of computing effect size is the same as given in Example 1.


A second approach is to obtain a weighted index of all the possible independent comparisons. For an example of this we choose two independent comparisons -- Intervention A versus Control, and Intervention B versus Control. The odds ratios are 3.781 and 2.717, respectively, for the two comparisons. The combined index will then be a weighted average of two odds ratios, with the weight being the reciprocal of the variance of the odds ratios. Thus the combined odds ratio (OR) can be expressed as 

OR = W1 OR1 + W2 OR2
where Wi (i = 1, 2) are the reciprocal of the corresponding variances of odds ratios divided by their sum. For the study presented here the combined odds ratio is 3.265.


The variance of the combined odds ratios can be calculated using the Mantel-Haenszel statistic (Fleiss 1981). However, this estimate of variance assumes that each of the odds ratios is independent. Because a common control is used, the odds ratios are not, in fact, strictly independent. Therefore adjustments need to be made to take into account their covariance. This can be done by fitting a simple logistic regression model, and treating the combined indices as a weighted average of regression coefficients. The variance-covariance of the estimated regression coefficients will then be used to obtain the variance of the weighted sum. The confidence interval using the Mantel-Haenszel procedure, assuming independence, is [2.989, 3.565]. Assuming non-independence, however, the confidence interval for the combined index is [2.924, 3.645].


Example 4: Clark and colleagues (1964) conducted a quasi-experimental study in Dhaka involving two intervention groups and one control group in which they examined the proportion of couples using contraceptives during the year leading up to the surveys before and after intervention. The following data were extracted from the study:

Treatment
Sample Size
Proportion Using 

Contraception in Last Year

Intervention A
37
  Pre                 Post 

.351                .568

Intervention B
165
.345                .460

Control
203
.315                .350


To control for baseline differences in this example, the measure calculated will be the change in odds ratios. This is obtained by fitting a logistic regression model with the two treatment dummy variables and a variable representing the time of survey (pre- and post-intervention) and their interaction. The difference in log odds ratios of contraceptive acceptance in the post-intervention period will be given by the corresponding regression coefficients of the interaction terms. In this study, the corresponding odds ratios are 2.074 and 1.385, respectively, for the two intervention groups A and B. A weighted average of these odds ratios with the reciprocal of the variances as weights will provide a combined summary index for the study. This weighted index is 1.538. The estimated variance-covariance matrix needs to be used to compute the confidence interval for this index. The confidence interval is [0.9127, 2.5913].


Example 5: Bertrand, Russell-Brown and Landry (1986) reported the results of a study in Barbados to assess hospital-based ante-natal counseling and postpartum home visits designed to improve contraceptive knowledge and use as well as delay subsequent pregnancies among adolescent mothers. In the first of the two interventions that were compared mothers received three home visits (A), whereas those in the second group received only one home visit (B). Both groups had been offered family planning counseling in the hospital. The following data for women sexually active after delivery were extracted from the report of the study. In this example, the outcome measure has more than two categories.

Treatment
Sample Size
Contraceptive Use
Always    Sometimes    No Use

Intervention A
216
161             40             15

Intervention B
183
144             27             12

For this situation a multinomial logit model (Stokes, Davis and Koch 1996) is fitted first, as follows:


log 

 = B01 + B11 (treatment)


log 

 = B02 + B12 (treatment).

Treatment is coded 1 for Intervention A (three home visits) and 0 for Intervention B (one home visit). The regression coefficients for the treatments are the log odds ratios. A weighted average of the two odds ratios comprise the summary measure we use. In this example the two odds ratios are 0.89 and 1.18 for interventions A and B, respectively. Therefore the combined odds ratio is 1.01, with a confidence interval of [0.50, 2.04].

Combining the Results of Individual Studies


The two principal approaches to combine effect sizes across studies are the fixed effects and random effects models. In the former, a common effect across studies is estimated, while in the random effects modeling a model for individual studies is used. The fixed-effect method is used when there is minimal heterogeneity in effects across studies and the random effects model is used when there is substantial heterogeneity in effects across studies. 


It is common for the results of different studies to vary substantially; the more diverse the studies, the more likely the results will be heterogeneous. Bailey (1987) describes a number of situations that can generate heterogeneity in results across studies. One acceptable situation is when the heterogeneity is a product of chance. Another desirable situation is when heterogeneity is due to the scale of measurement because that can be handled with the choice of effect size measure. When odds ratios show heterogeneity, a difference in proportion may not. The study design or characteristics of the population studies may also generate heterogeneity. If the effect sizes vary widely, the source of heterogeneity can be identified. Methods of reducing heterogeneity include changing the scale of the measurement and stratifying the results by study design or characteristics of the population. 

Tests for homogeneity of results

A generally applicable test for homogeneity of results belongs to the family of Cochran's Q test (Fleiss 1981). The test statistic is  Q = 

, where di is the common outcome measure chosen for individual studies and k is the number of studies. The quantity d* is a weighted value of all the di values.


For continuous data, Hedges and Olkin (1985) suggest wi as the reciprocal of an adjusted variance of di divided by the sum of all the adjusted variances across studies. The adjusted variance is 

, where NI and NC are the sample sizes, respectively, of the intervention and control groups. For discrete outcomes, DerSimonian and Laird (1986) suggest using Q with the weights wi as the reciprocal of the estimated variance divided by the sum of these reciprocals.

Fixed effects model  


Cochran (1954) suggested a simple fixed effects model to combine the outcome measures (di) from k different studies. Under this model, di = ( + ei , where ei has a normal distribution with a mean of zero and variance of 

, and where 

 is the variance of di. Under this model, an estimate of the common mean ( is provided by the weighted average



, 

where 

.


If the di are not all equal (by virtue of the test for homogeneity), then an attempt is made to determine whether the variation in effect size is the result of some factor outside the study. Such factors could include the region in which the study was conducted and the exact nature of the experiment (targeting the husband-wife combination versus the wife alone); there are other known sources of variation. In order to take into account such sources of variation, a general fixed effects linear model is used. The model takes the form

d = x.( + e

The variance-covariance vector of e is a diagonal matrix, with the diagonal elements being the estimated variance of d. The weighted least square method can be performed with standard statistical packages to estimate the regression coefficients. The predicted mean from the regression model is used to obtain a summary measure for subgroups presumed to be homogeneous.

Random effects model  


Cochran (1954) noted that if the values to be combined do not agree within the limits of the error in the fixed effects model, a random effects model should be used. A simple random effects model can be specified as follows:

di = (i + (i
where (i is the true effect size and (i is the within-study error. It is further assumed that the true effects size (i is the realization of a single effect size from a distribution of effect sizes. Thus under the random effects model, it is assumed that there exists a distribution of effects across studies. The mean and the variance of this distribution are denoted as ( and var(s), respectively. Then the random effects model can be re-written as di = ( + si + (I , where si indicates the deviation of the study-specific effects (i from the overall mean (.


When the outcome measurement di is continuous, the variance of si is calculated as follows (Cooper and Hedges 1994, Chapter 18): We calculate, first, the variance of the observed effect sizes from the k studies as (2(di) = ((di(

)2/(k(1), where 

 is the unweighted mean of d1 through dk. We also compute (2(di/(i) = 

, where ai = Ni - 2C(Ni-2)2(Ni ( 4, Ni = NIi + NCi (combined sample size for each study), and C is the bias correction factor referred to earlier. The var(s) is computed as (2(di) (

. The combined estimate is then obtained as 

widi/

 where wi = 1/

 = var(s) + var(de).


DerSimonian and Laird (1986) present a simple procedure for combining discrete outcome results using a random-effects approach. (The outcome measure may be the difference in proportions, or log odds.)  Their estimate of var(s) is:  



  ,

where Q = 

(di ( d*), the Cochran statistic used to test the homogeneity of results, and wi = 1/var(di). Then the combined estimate is 

di/

 where wi = [var(s) + var(di)]-1. The standard error of the estimate is calculated as 

.


With the DerSimonian and Laird method, the reciprocal of the weight is the sum of the individual study sampling error and the between-study variance. A large amount of heterogeneity in the studies will tend to push the weighted estimate towards an unweighted estimate.

The studies listed in Table 4 are used to illustrate methods of combining effect sizes. They are among those in our in-progress meta-analysis of evaluations of family planning IEC interventions in developing countries. The studies examined clinic- or hospital-based IEC interventions; four of them were used in examples above. These studies were chosen to illustrate meta-analysis methodology and not to determine the effect size of evaluated IEC programs, and therefore conclusions about IEC effect size should not be drawn from what we present here. 


Data from the studies were extracted to compute odds ratios involving acceptance or usage of contraceptives. The odds ratios are presented in Table 4 and their corresponding confidence intervals are shown in Figure 1. The odds ratios show considerable variability.

Table 4  Studies used to illustrate how effect sizes are combined


Study

Country
Odds
ratio
Confidence
interval




Lower
Upper

1. Sayegh and Mosley (1978)
Lebanon
2.32
    1.49
 3.61

2. University of Ghana (1979)
Ghana
3.26
    2.92
 3.64

3. Omu et al. (1989)
Nigeria
4.09
    2.36
 7.08

4. Clark et al. (1964)
Bangladesh
1.54
    0.91
 2.59

5. Bertrand et al. (1986)
Barbados
1.15
    0.75
 1.77

6. Caram et al. (1990)
Dominican Republic
0.89
    0.54
 1.49

FIGURE 1 HERE

Statistical significance is determined from Figure 1 by examining whether each horizontal line crosses the vertical line at 1. Three of the studies had statistically significant intervention effects. 


We use Cochran's Q test (described above) to test the homogeneity of the results. As suggested by DerSimonian and Laird (1986), we carry out the test by converting outcome variables to log odds ratios. These log odds ratios and their corresponding variances are given in Table 5. We denote di = log odds ratio for study and wi = 1/var(di). Then 

 = 1.0444. The Q statistic is 50.6400 with five degrees of freedom (p<.01). Thus we reject the null hypothesis of equality of all the odds ratios. The log odds ratios seem to meet the assumptions of normality needed for testing heterogeneity and of linearity for linear modeling more effectively than the simple odds ratios.


We fit a simple fixed model of the form di = ( + ( to combine the data. As mentioned before, an estimate of ( is simply a weighted average of the observed dis, with the weight (wi) being the reciprocal of the variance of dis. The standard error of the estimate will then be 

. Table 5 shows the variances and corresponding weights of the six studies used here.

Table 5 Log odds, variances, weights, combined index

Study
Log odds

di
var(di) = vi
wi = 1/vi
wi*

1
0.8423
0.0509
     19.6456
       2.7096

2
1.1832
0.0031
   315.8659
       3.1122

3
1.4080
0.0786
     12.7226
       2.5205

4
0.4304
0.0786
     14.1243
       2.5205

5
0.1380
0.0487
     20.5339
       2.7259

6
0.1113
0.0672
     14.8814
       2.5950

Total


   397.7733
     16.2342


Using the numbers in Table 5, we get the combined log odds ratio of 1.0444 with standard error of 0.0501. The log odds ratio will be converted into odds ratio by exponentiation of log odds. The resulting odds ratio is 2.8418 with a confidence interval of [2.5758, 3.1353].


One drawback of the fixed effects model can be seen from Table 5. Study 2, which has the smallest variance and largest sample size of the six studies, dominates the final estimate. Because of the high degree of heterogeneity in study results, a random effects model is preferred for combining the studies. Since the outcome measure is discrete (log odds), we use the approach recommended by DerSimonian and Laird (1986) described above. The model is 

di = ( + Si + ei
where di is the log odds ratio.


An estimate of between-study variance is calculated as follows: Let Q denote the Cochran Q computed for the heterogeneity test. Earlier, we calculated that Q = 50.64. Then max{0, Q-(k-1)} = max{0, 45.64} = 45.64. Then using DerSimonian and Laird's formula, var(s) = 45.64/143.4533 = 0.3181. We use the var(s) and var(d) to compute a new weight 

 as [var(s)+var(di)]-1. These new weights are given in Table 5.


The new adjusted weights are used to get a combined log odds ratio and its standard error. For the values in Table 5, the combined log odds ratio is 0.6596, with a standard error of 0.2482. The combined odds ratio is 1.9339 with a confidence interval of [1.1889, 3.1456].


Unlike the weights in the fixed effects model, the weights are more or less uniform under the random effects model. As mentioned earlier, the large degree of heterogeneity in the studies pushes the random effects model estimate closer to an unweighted average of the effects. It is sometimes argued that studies with large sample sizes (and which subsequently result in smaller variance, and hence in larger weights) should be allowed to dominate in obtaining a combined index. In such a scenario a fixed effects model is preferred. However, one can argue that a single study with a larger size can estimate the effect size with high precision under one set of circumstances, but may not be representative under different conditions. In this case one should use the random effects model to obtain a combined measure. A mixed model (Searles 1987) containing both fixed and random effects can be used to include known sources of heterogeneity. This approach can cause computational difficulties, especially when outcome measures are discrete.

Other Considerations 



Although we have focused on the meta-analysis of evaluation studies here, findings from other types of studies also can be subjected to this type of synthesis. In the population field, for example, research on the relationship between pregnancy desire and contraceptive practices, education of women and fertility trends, and contraceptive use-effectiveness might be considered for meta-analysis. An explicit example is a meta-analysis of studies of adolescent contraceptive use (Whitley and Schofield 1985-86). All of the principles presented in this chapter apply to meta-analysis of these other types of studies.


Meta-analysis sometimes is criticized for being a type of apples-and-oranges comparison because the studies involved are so varied. For example, the differences between measures of family planning program outcomes may be considered too large and too numerous for an aggregation of effect sizes to be meaningful. This aggregation of effect sizes generally is assumed to be suitable as long as the same phenomenon is under study. Thus, it may be more appropriate to use meta-analysis to study "the outcomes of IEC programs" than "the impact of IEC programs on IUD continuation rates in Thailand" if too few studies of the latter program type and dependent variable have been conducted in Thailand. Meta-analysis enables us to more confidently determine the generality of effects across studies. In addition, and as indicated above, the meta-analyst often studies whether effect sizes vary across differences in studies, such as the decade in which the study was conducted, the type of dependent variables it measured, and the research methods used. The meta-analyst also often calculates a test for heterogeneity to test the assumption underlying the apples-oranges argument: that effect size varies across studies. Finally, most effect size measures standardize for the different units of measurement used across studies.


In this chapter we have emphasized the d family for effect size estimates, and the use of odds ratios and logistic regression. Statistics in the r family also are commonly used for effect size estimates in meta-analysis. Perhaps the key thing to recognize in this regard is that one can often compute d family statistics directly from those in the r family, and vice versa, so that a common technique across studies can be used for a given meta-analysis. Chi-square values can be converted into an r measure, and the difference PI-PC  is the Phi coefficient, a well known strength of association in a 2(2 contingency table. 


There are many unresolved issues concerning the appropriate way to combine study results. These include choosing between fixed and random effects models, appropriate weighting for small studies, determining the shape of a population distribution in a random effects model, and how to best determine sources of heterogeneity and incorporate them into models (Thompson 1993, and Smith, Spiegelhalter and Thomas 1995). Future work likely will be addressing these and other issues in depth.

Conclusions



Given the many completed evaluations of family planning programs, the availability of meta-analytic methods, and the rarity of meta-analyses of studies of family planning program effects, meta-analysis appears a particularly fruitful approach to increase our knowledge about family planning programs. 
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Table 1  Study characteristics

Characteristic
Explanation

Program location
name of continent, country, province, district, city/village

Author(s) and year of report


Groups compared
type of IEC intervention, control

Research design
randomized experiment or quasi-experiment

Units assigned to program
e.g., individuals or geographical area

Dates of study
1) baseline, 2) program, 3) endline/follow-up

Study units
e.g., married women of reproductive age, couples, adolescents

Dependent variables
family planning attitudes and practices

Results
evaluation findings

Author conclusions


Table 2  Summary measures belonging to the d family
Measure
Variance

PI ( PC
PI (1 (PI)/NI  +  PC (1 ( PC)/NC

arcsin(PI) ( arcsin(PC)
1/NI + 1/NC

Probit (PI) ( Probit (PC)


 a

logit (PI) ( logit (PC)




a  Zp = standard normal value corresponding to p

Table 3  Effect sizes
Type
Outcome
Variance

PI - PC
.1588
.001687

arcsin (PI) - arcsin (PC)
.1635
.009070

probit (PI) - probit (PC)
.4920
.011554

logit (PI) - logit (PC)
.8420
.050902

Table 4  Studies used to illustrate how effect sizes are combined


Study

Country
Odds
ratio
Confidence
interval




Lower
Upper

1. Sayegh and Mosley (1978)
Lebanon
2.32
    1.49
 3.61

2. University of Ghana (1979)
Ghana
3.26
    2.92
 3.64

3. Omu et al. (1989)
Nigeria
4.09
    2.36
 7.08

4. Clark et al. (1964)
Bangladesh
1.54
    0.91
 2.59

5. Bertrand et al. (1986)
Barbados
1.15
    0.75
 1.77

6. Caram et al. (1990)
Dominican Republic
0.89
    0.54
 1.49

Table 5 Log odds, variances, weights, combined index

Study
Log odds

di
var(di) = vi
wi = 1/vi
wi*

1
0.8423
0.0509
     19.6456
       2.7096

2
1.1832
0.0031
   315.8659
       3.1122

3
1.4080
0.0786
     12.7226
       2.5205

4
0.4304
0.0786
     14.1243
       2.5205

5
0.1380
0.0487
     20.5339
       2.7259

6
0.1113
0.0672
     14.8814
       2.5950

Total


   397.7733
     16.2342
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