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Abstract

A common index of disease incidence and mortality is the standardized mortality ratio (SMR).
The SMR is a reliable measure of relative risk for large geographical regions such as countries
or states, but may be unreliable for small areas such as counties. This paper reviews several
empirical Bayes methods for producing smoothed estimates of the SMR as well as the conditional
autoregressive procedure which accounts for spatial correlation. A multi-level Poisson model
with covariates is developed, and estimating functions are used to estimate model parameters as
in Lahiri and Maiti (University of Nebraska Technical Report, 2000). A hybrid of parametric
bootstrap and delta methods is used to estimate the MSE. The proposed measure captures all
sources of uncertainty in approximating the MSE of the proposed empirical Bayes estimator of
the SMR.
c© 2002 Elsevier Science B.V. All rights reserved.

0. Introduction

Disease mapping is a method used by epidemiologists, medical demographers and
biostatisticians to understand the geographical distribution of a disease. Disease maps
may be useful for government agencies to allocate resources or identify hazards related
to disease such as incidence of leukemia near nuclear installations. Faster computers
have led to advances in disease mapping, allowing for more complex models and
estimation methods, larger data sets and improved graphics.

Let �i be the unknown relative risk for region i with probability density function
f(�i). The standardized mortality ratio (SMR) is a common measure of relative risk.
For example, Ishibashi et al. (1999) recently used the SMR to study the death rate
and causes of death for patients with ulcerative colitis in Fukuoka, Japan. The SMR
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is de@ned as �̂i = Oi=ei where Oi is the observed number of deaths and ei is the
expected number of deaths for region i. The SMR, however, has limitations. The
variance of the SMR is �i=ei, and is large in regions where the expected value is
small (small population size) and small for regions where the expected value is large
(large population size). This makes interpretation of the SMR diCcult (Lawson et al.,
2000). For example, a SMR of 1 is obtained when the observed number of deaths and
the expected number of deaths are each 500 or when the observed number of deaths
and the expected number of deaths are each 5. Further, in regions where there are no
observed deaths, the SMR is zero, regardless of the population size.

Much work has focused on borrowing information from other geographic areas via
modeling and using empirical Bayes methods, thus reducing the total mean-square error.
Clayton and Kaldor (1987), Marshall (1991a), Lahiri and Maiti (2000) and others
used empirical Bayes methods to smooth the SMR. Here we review these methods
and adapt the method used by Lahiri and Maiti (2000) to propose a new empirical
Bayes estimator of the SMR. Lahiri and Maiti (2000) estimated the model parameters
by solving a system of optimal estimating equations. We extend their Gamma model
to include covariates via a regression model along with estimating functions (EF) to
estimate the model parameters and address the problem of measuring the uncertainty
of the proposed empirical Bayes estimator. See Christiansen and Morris (1997) and
Waller et al. (1997a) for other methods involving the Gamma model with auxiliary
data. Most work on measuring the uncertainty of the empirical Bayes estimator has
focused on normal linear models. Morris (1983), Prasad and Rao (1990), Singh et
al. (1998) and Butar and Lahiri (2003) all examine normal linear models. The models
here do not assume normality and hence these methods do not apply. Readers interested
in hierarchical Bayes are referred to Ghosh et al. (1998), Waller et al. (1997b) and
Bernardinelli and Montomoli (1992).

In Section 1, the empirical Bayes estimator is described. Section 2 discusses the
Gamma model and estimation of the model parameters. Section 3 extends the Gamma
model considered in Section 2 to include auxiliary data and discusses estimation of
the model parameters. A regression model along with estimating functions is proposed
to estimate the model parameters. In Section 4, the Log-Normal model, an alternative
to the Gamma model, and estimation of model parameters is discussed. Section 5
considers extension of the Log-Normal model to include covariates. The measure of
uncertainty of the empirical Bayes estimator in these models is addressed in Section 6.
Section 7 discusses spatial correlation. Finally, in Section 8 an example is given using
Nebraska prostate cancer data previously considered by Cowles et al. (1999).

1. Empirical Bayes estimation of relative risks

Let Oil and Nil be the observed number of deaths from disease and the population
size for the lth age group in the ith region (i = 1; : : : ; m; l = 1; : : : ; L), respectively.
Consider the multiplicative model Ôil = �i
lNil, where �i is the eJect due to the ith
region (i = 1; : : : ; m) and 
l is the eJect due to the lth age group (l = 1; : : : ; L). The
L age groups are used to determine the expected counts 
lNil. The 
l’s are assumed
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to be known from an external source. Clayton and Kaldor (1987) discuss estimation
of 
l.

Consider estimation of �i, the relative risk for the ith region. The SMR is de@ned as
�̂i = Oi=ei where Oi =

∑L
l=1 Oil is the number of observed deaths for region i and ei =∑L

l=1 
lNil is the expected number of deaths in region i (i=1; : : : ; m). Conditional on �i,
the Oi’s are assumed to be independent Poisson random variables with E(Oi|�i) = ei�i.

Suppose that �i has prior density function f(�i) with E�(�i) = �i and Var�(�i) = �2
i .

Under the squared error loss function, the best linear Bayes estimator of �i (Ericson,
1969) is given by

�̂B
i = (1 − Bi)�̂i + Bi�i; (1)

where Bi = �i=(ei�2
i + �i) for i = 1; : : : ; m. The empirical Bayes estimate replaces the

unknown �i and �2
i by their estimates �̂i and �̂2

i and is given by

�̂EB
i = (1 − B̂i)�̂i + B̂i�̂i; (2)

where B̂i = �̂i=(ei�̂2
i + �̂i) for i=1; : : : ; m. Next, several choices for f(�i) and estimates

for �2
i and �i are discussed.

2. Gamma model

This section presents three methods from the literature for estimating �i assuming
the Gamma model. One advantage of this model is the reduction from 2m (�1; : : : ; �m;
�2

1 ; : : : ; �
2
m) to two parameters � and �2. We begin as before, but assume a Gamma

prior on �i.
I. Conditional on �i’s, the Oi’s are independent Poisson random variables with means

ei�i (i = 1; : : : ; m).
II. A priori, �i’s are independently distributed as Gamma random variables with shape

parameter � and scale parameter �. That is E(�i) = �=� = � and Var(�i) = �=�2 = �2.
Under the squared error loss function and the Gamma model, the Bayes estimator

of �i is given by

�̂B
i =

Oi + �
ei + �

= (1 − Bi)�̂i + Bi�; (3)

where Bi=�=(ei+�) for i=1; : : : ; m. In practice, � and � are unknown and are replaced
by their estimates �̂ and �̂ resulting in the empirical Bayes estimate

�̂EB
i = (1 − B̂i)�̂i + B̂i�̂; (4)

where B̂i = �̂=(ei + �̂) for i = 1; : : : ; m and �̂ = �̂=�̂. The next section discusses various
methods for estimating � and �.

2.1. Maximum likelihood estimation

Clayton and Kaldor (1987) used the maximum likelihood (ML) method to estimate
the model parameters � and �. Since the distribution of Oi|�i is Poisson (ei�i) and
the distribution of �i is Gamma (�; �), the distribution of Oi is negative binomial
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(�; �=(ei +�)). Thus, integrating out �i, the log likelihood for � and � can be expressed
as

L(�; �) =
m∑
i=1

{
log

�(Oi + �)
�(�)

+ � log(�) − (Oi + �)log(ei + �)
}

: (5)

Equating the partial derivatives of L(�; �) with respect to � and � to zero yields
the following equations which can be solved using a variety of iterative methods
(Newton–Raphson, etc.) to produce estimates of � and � (Clayton and Kaldor, 1987):

0 =
m∑
i=1

Oi−1∑
j=0

(
1

�̂ + j

)
+ m log �̂ −

m∑
i=1

log(ei + �̂); (6)

�̂

�̂
=

1
m

m∑
i=1

Oi + �̂

ei + �̂
=

1
m

m∑
i=1

�̂EB
i : (7)

When the observed number of deaths Oi is zero, the quantity
∑−1

j=0 1=(�̂ + j) in
Eq. (6) is assumed to be zero.

Clayton and Kaldor (1987) developed an alternate estimation method which is com-
putationally simpler than the maximum likelihood method.

2.2. Alternate method of estimation

Clayton and Kaldor (1987) also proposed a method combining moment and ML
estimators using Eq. (7) plus

�̂

�̂2
=

1
m− 1

m∑
i=1

(
1 +

�̂
ei

)(
�̂EB
i − �̂

�̂

)2

: (8)

The new equation is obtained by equating the Pearsonian chi-square from the two
ML equations in Section 2.1 with their asymptotic expectation. The model parameters
� and � can be estimated by solving these two equations recursively following the
steps below (Clayton and Kaldor, 1987).
Step 1: Start with initial estimates �̂ and �̂ of � and �.
Step 2: Calculate �̂EB

i = (1 − B̂i)�̂i + B̂i�̂ where B̂i = �̂=(ei + �̂) and �̂ = �̂=�̂.
Step 3: Calculate

1
m

m∑
i=1

�̂EB
i = C0; (9)

1
m− 1

m∑
i=1

(
1 +

�̂
ei

)(
�̂EB
i − �̂

�̂

)2

= D0: (10)

Step 4: The new estimates of � and � are �̂ = C0=D0 and �̂ = C0�̂.
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Repeat steps 2–4, calculating �̂EB
i with the updated estimates of � and � until

convergence.

2.3. Method of moments estimation

Another method of estimating � and � is the method of moments. Marshall (1991a)
proposed to estimate �=� = � by

�̂ =
∑m

i=1 �̂iei∑m
i=1 ei

(11)

and estimate �=�2 = �2 by

�̂2 = s2 − �̂
1
m

∑m
i=1 ei

; where s2 =
∑m

i=1 ei(�̂i − �̂)2∑m
i=1 ei

: (12)

If the value of �̂2 is negative, it will be truncated at zero. From these two equations
we obtain the estimates of � and � as �̂ = �̂2=�̂2 and �̂ = �̂=�̂2.

The ML and alternate methods in the previous sections require estimation using iter-
ative methods, whereas the method of moments estimate has a direct solution. Another
iterative method using estimating equations proposed by Lahiri and Maiti (2000) is
considered next.

2.4. Estimating functions

Lahiri and Maiti (2000) used EF to estimate � and �. In general, estimating func-
tions combine the least-squares and maximum likelihood estimation (MLE) methods.
Consider a simple example in which y1; : : : ; yn are i.i.d with E(yi) = � for i = 1; : : : ; n.
We can use the estimating function g =

∑n
i=1(yi − �)bi to obtain an estimate of �

in the following manner. Suppose that
∑n

i=1 bi = c. The variance of g is minimized
when bi = c=n for i = 1; : : : ; n. Equating g to zero gives �̂ = My. The bi’s, however, need
not be constant and can be diJerentiable functions of �. For additional information on
estimating equations for Poisson models, see Godambe (1991).

Lahiri and Maiti (2000) proposed the following EF which can be solved using
iterative methods:

m∑
i=1

aopt
i (’)

(
�̂i − �

�

)
= 0; (13)

m∑
i=1

bopt
i (’)

{
K−1

i

(
�̂i − �

�

)2

− 1

}
= 0; (14)

where aopt
i =K−1

i =
∑m

i=1 K
−1
i ; bopt

i =h−1
i =
∑m

i=1 h−1
i ; Ki =�(�+ ei)=�2ei; hi =(1+3�+

3�2(ei + 2=�) + 6ei�4=�2)=(� + �2ei) − 1; � = �=�; �2 = �=�2 and ’ = (�; �)′.

2.5. Comparison of estimation methods

The method of moments is computationally simpler than the other methods
considered. The ML, alternate and EF approaches require use of iterative methods.



48 J.L. Meza / Journal of Statistical Planning and Inference 112 (2003) 43–62

Marshall (1991a) compared the ML, alternate, and method of moments estimates and
found little diJerence between the three.

3. Extension of Gamma model using auxiliary data

The Gamma model can be extended to incorporate covariate information and
estimated using EF:

I. Conditional on �i’s, the Oi’s are independent Poisson random variables with means
ei�i; (i = 1; : : : ; m).

II. A priori, �i’s are independently distributed as Gamma random variables with
shape parameter � and scale parameter �i; (i = 1; : : : ; m). Let E(�i) = �=�i = �i and
suppose there are covariates xi = (xi1; : : : ; xip)′ such that �i = x′i b.

Under the squared error loss function and the Gamma model, the Bayes estimator
of �i is given by (3) with Bi = (�=x′i b)=(ei + �=x′i b) and �i = x′i b for i = 1; : : : ; m.
The empirical Bayes estimate of �i is given in (4) with B̂i = (�̂=x′i b̂)=(ei + �̂=x′i b̂) for
i = 1; : : : ; m and �̂i = x′i b̂.

EF as in Lahiri and Maiti (2000) can be used to estimate ’= (�; b1; : : : ; bp)′. De@ne
the functions f and gk by

f(’;O) =
m∑
i=1

ai(’)(�̂i − �i); (15)

gk(’;O) =
m∑
i=1

cki(’)[%−1
i (�̂i − �i)2 − 1]

[
@�i

@bk

]
(16)

for k = 1; : : : ; p where O= (�̂1; : : : ; �̂m); �i = x′i b; %i = Var(�̂i) = x′i b(1 + eix′i b=�)=ei, and
ai(’) and cki(’) are constants to be determined optimally. Note that E[f(’;O)] = 0
and E[gk(’;O)] = 0 for k = 1; : : : ; p and for all ’, where the expectation is taken with
respect to the extended Gamma model.

We need to @nd ai(’) for i = 1; : : : ; m such that Var[f(’;O)] is minimum subject
to
∑m

i=1 ai(’) = 1, where the variance is taken with respect to the extended Gamma
model. Following Lahiri and Maiti (2000)

aopt
i =

%−1
i∑m

i=1 %
−1
i

: (17)

Similarly, we need to @nd cki(’) for k = 1; : : : ; p such that Var[gk(’;O)] is minimum
subject to

∑m
i=1 [(@�i=@bk)cki(’)] = 1.

By Theorem A.1 (Appendix A)

copt
ki (’) =

[(@�i=@bk)hi]−1∑m
i=1 h

−1
i

; (18)

where hi =Var(�̂i−�i)2=%i =(1+3�i +3�2
i (ei +2=�i)+6ei�4

i =�
2
i )=(�i +�2

i ei)−1; �i =x′i b
and �2

i = (x′i b)2=� for i = 1; : : : ; m.
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Estimate ’ = (�; b1; : : : ; bp)′ by ’̂ = (�̂; b̂1; : : : ; b̂p)′ where �̂; b̂1; : : : ; b̂p are found by
solving

m∑
i=1

aopt
i (’)(�̂i − �i) = 0; (19)

m∑
i=1

copt
ki (’)[%−1

i (�̂i − �i)2 − 1]
[
@�i

@bk

]
= 0 (20)

for k = 1; : : : ; p using iterative methods.

4. Log-Normal model

Let 'i = log(�i) and for simplicity, assume that 'i are i.i.d. N (�; �2). Under the
Log-Normal model, the empirical Bayes estimate E(�i|Oi) does not have a closed
form, and will be approximated. To obtain the empirical Bayes estimate in a closed
form, Clayton and Kaldor (1987) assumed the Poisson likelihood for 'i given Oi to be
quadratic. They considered a bias-corrected version using '̂i = log[(Oi + 0:5)=ei] (since
the choice of '̂i = log(Oi=ei) is unde@ned for Oi = 0) and found the empirical Bayes
estimator of 'i to be

'̂EB
i =

�̂ + �̂2(Oi + 0:5)'̃i − 0:5�̂2

1 + �̂2(Oi + 0:5)
; (21)

which can be written as

'̂EB
i = (1 − (̂i)'̂i + (̂i�̂ − 0:5(̂i�̂2; (22)

where (̂i = [1 + �̂2(Oi + 0:5)]−1. Hence, �i can then be estimated as exp('̂EB
i ).

Clayton and Kaldor (1987) used the EM algorithm to obtain estimates of � and �2

by cycling between (21) (or equivalently (22)) and (23) and (24) until convergence.

�̂ =
1
m

m∑
i=1

'̂EB
i ; (23)

�̂2 =
1
m

(
�̂2

m∑
i=1

[1 + �̂2(Oi + 0:5)]−1 +
m∑
i=1

('̂EB
i − �̂)2

)
: (24)

5. Extension of Log-Normal model using auxiliary data

The Log-Normal model can be extended to include auxiliary information. Let 'i =
log(�i) and take '̂i = log[(Oi + 0:5)=ei]. Suppose there are covariates xi = (xi1; : : : ; xip)′

such that 'i =x′i b+)i where )i is N (0; �2). The empirical Bayes estimator of 'i is given
by (23) with �̂i = x′i b̂. Next, two possible methods of estimating ’ = (�2; b1; : : : ; bp)′

are discussed.
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5.1. Method of simulated moments estimation

There are p equations of the form
m∑
i=1

xij'̂i =
m∑
i=1

xijE’('i) for 16 j6p (25)

and an additional equation of the form
m∑
i=1

∑
j �=i

'̂i '̂j =
m∑
i=1

∑
j �=i

E’('i'j) (26)

yielding a total of p + 1 equations. Note that in (25) and (26), the left hand side is
equated to its expectation and that E’('i) and E’('i'j) are unknown.

Now

E’('i) = E’(x′i b + )i) = E’(x′i b + �z); (27)

where z is a standard normal random variable. Accordingly, E’('i) can be estimated
as in Jiang (1998) by generating R independent standard normal random deviates. In
other words, estimate E’('i) by

1
R

R∑
r=1

(x′i b + �zr); (28)

where zr is a standard normal deviate for r = 1; : : : ; R.
Similarly, E’('i'j) = E’(x′i b + �z)(x′jb + �z) can be estimated by

1
R

R∑
r=1

(x′i b + �zr)(x′jb + �zr): (29)

These p + 1 equations can be solved using the Newton–Raphson procedure using
initial estimates for �2 and b1; : : : ; bp. See Jiang (1998) for more details.

5.2. Maximum likelihood estimation

Breslow (1984) modeled extra-poisson variation in log-linear models and outlined
the ML method for estimating ’ = (�2; b1; : : : ; bp)′. Assuming the observed values Oi

are large, 'i = log(�i) is approximately N (x′i b; �
2 + -2

i ), where -2
i = 1=E(Oi). We will

estimate -2
i by -̂2

i = 1=Oi. As in Breslow (1984)
Step 1: Find the weighted least-squares solution to

'̂i = x′i b + )i; (30)

where E()i) = 0 and Var()i) = �2 and the weights are given by wi = (�̂2 + -̂2
i )

−1.
An initial estimate of �2 can be taken as 0. If the residual sum of squares from the

regression is approximately equal to its degrees of freedom, then the procedure stops.
If not, proceed to step 2.
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Step 2: Assuming that the wi are the inverse variances, then
m∑
i=1

('̂i − x′i b̂)2

(�2 + -2
i )

= m− p (31)

in expectation, where '̂i=log(Oi=ei). An estimate of �2 can be found from this equation
by solving recursively for �2 to obtain

�2 = (m− p)−1
m∑
i=1

('̂i − x′i b̂)2

1 + (�2Oi)−1 : (32)

At the @rst iteration of step 2, a nonzero estimate of �2 is needed for Eq. (32).
Thus, at the @rst iteration of step 2, estimate �2 by

�̂2
0 =

∑m
i=1 Oi(yi − x′i b̂)2 − (m− p)∑m

i=1 Oi(1 − Oiqi)
; (33)

where qi are the diagonal elements of X (X ′WX )−1X ′. If the wi’s do not vary widely,
the quantity

∑m
i=1 Oi(1 − Oiqi) can be estimated by ((m− p)=m)

∑m
i=1 Oi.

Step 3: Update the estimates of the weights wi = (�̂2 + -̂2
i )

−1.
Repeat steps 1–3 until convergence. See Breslow (1984) for details.

6. Measures of uncertainty

Up to this point, we have only discussed the point estimators. Now, we consider
estimating the measure of uncertainty for all estimators.

6.1. Bootstrap approach

The measure of uncertainty for the methods discussed can be estimated using boot-
strap calculations. The calculations are discussed here using the Gamma model, but
can be altered to accommodate the other models. The variance can be estimated in the
following manner:
Step 1: Simulate B counts O∗

i as independent Poisson random variables with means
ei�i.
Step 2: For each bootstrap sample, calculate �∗i , where �∗i is an estimate of �i.
Step 3: The sample variance of the B bootstrap samples is the bootstrap estimator

of the variance.

6.2. Details for the extended Gamma model using estimating functions

A naive measure of uncertainty of �̂EB
i is

Var(�i|Oi; ’̂) =
Oi + �̂

(ei + �̂=x′i b̂)2
(34)

for i = 1; : : : ; m. This underestimates the uncertainty of �̂EB
i due to the estimation of

’ = (�; b1; : : : ; bp)′, especially for small regions.
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Laird and Louis (1987) and Lahiri and Maiti (2000) used a parametric bootstrap
method to de@ne a measure of uncertainty for a normal model and the Gamma model,
respectively. Under this framework, the following bootstrap model is proposed.

Let O∗
i be the sample count for county i generated from the parametric bootstrap

procedure.
I. Conditional on the �∗i ’s, the O∗

i ’s are independent Poisson random variables with
means ei�∗i for i = 1; : : : ; m.

II. A priori, �∗i ’s are independently distributed as Gamma random variables with
shape parameter �̂ and scale parameter �̂i; (i = 1; : : : ; m). That is E(�∗i ) = �̂=�̂i = �̂i

and �̂i = x′i b̂ where b̂ is the vector of estimated regression parameters, b̂= (b̂1; : : : ; b̂p)′;
xi = (xi1; : : : ; xip)′. Let ’̂∗ = (�̂∗; b̂∗1 ; : : : ; b̂

∗
p)′. That is, ’̂∗ is found by replacing Oi by

O∗
i ; (i=1; : : : ; m). The Laird–Louis method gives the following measure of uncertainty

for �̂EB
i :

VarLL
i = E∗[Var(�i|Oi; ’̂∗)] + Var∗[E(�i|Oi; ’̂∗)]; (35)

where E∗ and Var∗ are the expectation and variance with respect to the above model.
Under the Gamma model, Lahiri and Maiti (2000) found that VarLL

i may be smaller
than the naive measure Var(�i|Oi; ’̂) for some small regions and developed an alternate
measure of uncertainty of �̂EB

i .
As in Lahiri and Maiti (2000), begin by considering the integrated Bayes risk of

�̂EB
i , de@ned as r(�̂EB

i ) = E(�̂EB
i − �i)2 where the expectation is with respect to the

extended Gamma model. A measure of uncertainty of �̂EB
i can be found by estimating

r(�̂EB
i ). It can easily be shown that

r(�̂EB
i ) = M1i(’) + M2i(’); (36)

where M1i(’)=E(�̂B
i −�i)2 =E[(Oi +�)=(ei +�=x′i b)2] and M2i(’)=E(�̂EB

i − �̂B
i )2. The

term M2i(’) can be estimated by the @rst two terms in the Taylor series expansion of
�̂EB
i around ’ to obtain

M2i(’) :=E[tr{(∇�̂B
i )(∇�̂B

i )′(’̂− ’)(’̂− ’)′}]; (37)

where ∇�̂B
i = [(@=@�)�̂B

i ; (@=@b1)�̂B
i ; : : : ; (@=@bp)�̂B

i ] and the approximation of M2i(’) is
of order O(m−1). M1i(’̂) can be approximated by examining the @rst three terms in
the Taylor Series expansion of M1i(’̂) around ’ to obtain

E[M1i(’̂)] :=M1i(’) + G1i(’) + G2i(’); (38)

where G1i(’) = [∇M1i(’)]E(’̂ − ’); ∇M1i(’) = [(@=@�)M1i(’); (@=@b1)M1i(’); : : : ;
(@=@bp)M1i(’)]; G2i(’) = 1

2 tr[Hi(’)5(’)]; 5(’) = E(’̂− ’)(’̂− ’)′ and

Hi(’) =



@2

@�2 M1i(’) @2

@�@b1
M1i(’) · · · @2

@�@bp
M1i(’)

@2

@b2
1
M1i(’) · · · @2

@b1@bp
M1i(’)

. . .
...

@2

@b2
p
M1i(’)


: (39)
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Since the bias of M1i(’̂) involves a term of order O(m−1), the bias cannot be ignored.
Estimate M1i(’) by

m1i(’̂) = (Oi + �̂)=(ei + �̂=x′i b̂)2 + G1i(’̂) + G2i(’̂); (40)

where G1i(’̂)=[∇Mi1(’)]|’̂ E∗(’̂∗−’̂); G2i(’̂)= 1
2 tr[Hi(’̂)5(’̂)] and 5(’̂)=E∗(’̂∗−

’̂)(’̂∗ − ’̂)′. Estimate M2i(’) by

m2i(’̂) = tr[(∇�̂EB
i )(∇�̂EB

i )′5(’̂)]; (41)

where ∇�̂EB
i = [(@=@�)∇�̂EB

i ; (@=@b1)∇�̂EB
i ; : : : ; (@=@bp)∇�̂EB

i ]|’̂ = [(ei − Oi=x′i b̂)=(ei +
�̂=x′i b̂)2; (Oi + �̂)�̂xi1=(x′i b̂ei + �̂)2; : : : ; (Oi + �̂)�̂xip=(x′i b̂ei + �̂)2].

A measure of uncertainty that accounts for the uncertainty due to estimation of ’ is

VarPi = m1i(’̂) + m2i(’̂) (42)

which is correct up to the order o(m)−1

The values E∗(’̂∗ − ’̂) and 5(’̂) and can be estimated by bootstrap Monte Carlo
simulation in the following manner:
Step 1: Generate B=1000 parametric bootstrap samples of size m; (O∗

i ; i=1; : : : ; m).
Step 2: For each bootstrap sample, calculate estimates of the parameters to obtain

’̂∗ = (�̂∗; b̂∗1 ; : : : ; b̂
∗
p)′.

Step 3: For each bootstrap sample, calculate (’̂∗ − ’̂).
Step 4: Combine the bootstrap estimates to estimate E∗(’̂∗ − ’̂) and 5(’̂).

7. Spatial correlation

It is possible that the relative risks (or log relative risks) are correlated. It is well
known that disease rates vary by geography. Much work has focused on the case when
the correlation depends on geographical proximity. Marshall (1991b) gives an extensive
review of methods for analysis of spatial patterns of disease.

A primary concern is identifying clusters of disease. A cluster of disease is a focus
of high (or low) incidence (Marshall, 1991b). A cluster which can be explained by
examining the age distribution of the area of concern is not as interesting as areas for
which the clustering is unexplained. Clustering may occur due to an elevated risk in
the cluster so that individuals within the cluster are at independently higher risk than
individuals outside the cluster. Clustering may also occur due to spatial interaction of
a disease with a high rate of transmission. Clusters may also occur by chance, for
example from random eJects. The Log-Normal model is an example of a model which
takes into account the random eJects by using extra-Poisson variation.

Several methods to account for geographic proximity in the Bayesian approach exist.
One infrequently used option is to apply a prior which is position dependent. A sec-
ond option is to model the neighboring areas as being correlated. Alternatively, spatial
auto-models are used to model the spatial dependence of the prior. In this method, the
mean is modeled conditional on the mean of its neighbors (Marshall, 1991b). One such
method is the spatial conditional autoregression (CAR) model proposed by Clayton
and Kaldor (1987). For more information on spatial autoregression procedures, see



54 J.L. Meza / Journal of Statistical Planning and Inference 112 (2003) 43–62

Besag (1974), Cook and Pocock (1983), Clayton and Kaldor (1987), Mollie and
Richardson (1991), Marshall (1991b) and Cressie (1992).

7.1. Estimation under the conditional autoregression model

Suppose that the log relative risks 'i are correlated by geographic proximity. Assume
the Log-Normal model and let ' be the vector of log relative risks where E(')=� and
Var(') =5. The simplest form of the Log-Normal model is when the 'i’s are i.i.d., in
which case �i =c and 5=�2I for all i=1; : : : ; m. Conditional autoregression is de@ned
in following manner:

E('i|'j; j �= i) = �i + 8
∑
j

Wij('j − �j); (43)

Var('i|'j; j �= i) = �2: (44)

The matrix W is known as the adjacency matrix of the map, where Wij = 1 if area
i and area j are adjacent and Wij = 0 otherwise. Besag (1974) showed that E(') = �
and Var(') = 5 = �2(I − 8W )−1 assuming the conditional distributions 'i|'j; j �= i are
normal.

The Bayes estimate of � is exp(b) where b is the mean of the posterior density of
' given O

b = [5−1 −  ′′('̂)]−1[5−1� −  ′′('̂)'̂ +  ′('̂)]: (45)

Here,  is the Poisson likelihood for '|O which is assumed to be quadratic.  ′('̂) and
 ′′('̂) are the @rst and second derivatives of  with respect to '. The empirical Bayes
estimate of � is exp(b̂), where � and 5 are replaced by their MLEs �̂ and 5̂.

The EM algorithm can be used to obtain MLEs of � and 5 as follows.
E-step: Using the current (or initial) estimates of �; �2 and 8, calculate

Q = − m
2

log(2;) +
m∑
i=1

1
2

log(1 − 8<i) − m
2

log(�2)

− 1
2�2 [tr(S(1 − 8W )) + (b− �)′(1 − 8W )(b− �)]; (46)

where <i are the eigenvalues of the adjacency matrix W and S = [5−1 −  ′′('̂)]−1.
M-step: Maximize Q with respect to � and 5 to update their estimates.

�̂ = b; (47)

�̂2 =
1
m

[tr(S(1 − 8W )) + (b− �̂)′(1 − 8W )(b− �̂)]: (48)

To estimate 8, maximize g(8) =
∑m

i=1 [log(1 − 8<i)] − m log(�̂2). Clayton and Kaldor
(1987) used a NAG search subroutine to estimate 8; Mollie and Richardson (1991)
used the Newton–Raphson algorithm. An application of the CAR procedure can be
found in Cowles et al. (1999).
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7.2. Measures of uncertainty for the conditional autoregression model

Mollie and Richardson (1991) provide details on estimating the uncertainty using the
conditional expected information of the prior of '. Cressie (1992) used an asymptotic
expansion as in Prasad and Rao (1990). Alternatively, the bootstrap approach discussed
in Section 6.1 may also be used.

8. Example

In this section, the methods discussed are applied to the data set analyzed by Cowles
et al. (1999). The data, compiled by the Nebraska Cancer Registry for 1990–1991,
consist of prostate cancer incidence records gathered from each Nebraska hospital as
well as Nebraska residents diagnosed and/or treated at hospitals in Colorado, Missouri,
Wyoming, Iowa and South Dakota as well as patients diagnosed and/or treated at
Nebraska outpatient facilities. The US Census Bureau estimates of average population
per square mile for 1990 were used as a covariate.

Table 1 displays estimates of incidence of prostate cancer for combined years 1990
and 1991 for the 93 Nebraska counties. Table 2 summarizes the estimates. The ML
method for the Log-Normal model is computationally simpler than the method of sim-
ulated moments, so only the ML method is displayed here.

The SMRs range from 0 (Arthur and Grant counties) to 2.60 (Thomas county).
In general, the SMRs are highly variable when the expected value is small and the
observed value is non-zero. The SMR and its estimated standard deviation are zero
when the observed value is zero.

All of the empirical Bayes methods produce non-zero estimates. In general, when the
expected count is large (for example Douglas county), the empirical Bayes estimate is
similar to the SMR. When the expected count is small (for example Banner county),
the empirical Bayes methods result in an estimate smoothed toward the overall mean.

For the Gamma model, the ML estimates exhibited less smoothing and were more
variable than the other estimates. This may be due to the sensitivity of the iterative
procedure to the choice of the initial estimates of model parameters. The alternate
(ALT) and EF estimation methods produce similar estimates. The ALT, method of
moments (MOM) and EF estimation methods have smaller variability than the ML
method, with smallest variability in the MOM estimate.

In the extended Gamma model using auxiliary data, the method of EF using co-
variates (EFC), had larger variability than the ALT, MOM and EF methods for the
Gamma model without covariates. One possible explanation of the performance of the
EFC estimate is the choice of auxiliary variable. The selection of an auxiliary variable
thought to be more highly associated with incidence of prostate cancer may produce
EFC estimates with smaller variability.

The EM method for the Log-Normal model produces estimates similar to the ALT,
MOM and EF estimates in the Gamma model. In the Log-Normal model, the EM
method has smaller variability than the ML method. Again, the choice of auxiliary
variable may produce ML estimates with smaller variability.



56 J.L. Meza / Journal of Statistical Planning and Inference 112 (2003) 43–62

Table 1
Estimators of Nebraska prostate cancer rates, 1990–1991

County O SMR SD Log-Normal
(SMR) Gamma model model

ML ALT MOM SD(MOM) EF EFC EM ML

Thomas 4 2.60 1.30 2.18 1.06 1.11 0.07 1.06 1.61 1.13 1.42
Dodge 113 1.83 0.17 1.83 1.63 1.62 0.12 1.63 1.71 1.65 1.77
Hooker 4 1.73 0.87 1.64 1.02 1.07 0.15 1.02 1.40 1.05 1.21
Boone 24 1.58 0.32 1.57 1.23 1.24 0.19 1.23 1.48 1.25 1.41
Holt 37 1.49 0.25 1.49 1.25 1.26 0.13 1.25 1.45 1.27 1.39
McPherson 73 1.48 0.17 1.48 1.34 1.34 0.08 1.34 1.46 1.34 1.43
Deuel 8 1.44 0.51 1.43 1.05 1.09 0.16 1.05 1.32 1.07 1.20
Kimball 12 1.40 0.40 1.40 1.08 1.12 0.17 1.08 1.33 1.10 1.22
Platte 60 1.40 0.18 1.40 1.26 1.27 0.14 1.26 1.33 1.27 1.35
Saunders 47 1.37 0.20 1.37 1.22 1.23 0.07 1.22 1.33 1.22 1.31
Kearney 17 1.33 0.32 1.33 1.09 1.12 0.17 1.09 1.27 1.10 1.21
Antelope 22 1.32 0.28 1.33 1.12 1.14 0.18 1.12 1.28 1.13 1.23
Logan 2 1.30 0.92 1.32 0.96 1.02 0.11 0.96 1.21 0.98 1.04
Burt 24 1.28 0.26 1.28 1.11 1.13 0.16 1.11 1.24 1.11 1.20
Gage 58 1.26 0.16 1.26 1.16 1.18 0.06 1.16 1.23 1.17 1.22
Adams 61 1.24 0.16 1.24 1.16 1.17 0.13 1.16 1.18 1.16 1.21
Franklin 14 1.24 0.33 1.25 1.05 1.08 0.07 1.05 1.21 1.06 1.14
Clay 18 1.16 0.27 1.17 1.03 1.07 0.14 1.03 1.14 1.04 1.09
Lancaster 273 1.15 0.07 1.15 1.13 1.14 0.07 1.13 1.19 1.13 1.14
Stanton 10 1.13 0.36 1.15 0.99 1.04 0.07 0.99 1.11 1.00 1.05
Cuming 25 1.09 0.22 1.10 1.02 1.05 0.15 1.02 1.09 1.02 1.06
Douglas 519 1.07 0.05 1.07 1.07 1.07 0.16 1.07 1.08 1.07 1.07
Gar@eld 6 1.07 0.43 1.10 0.96 1.02 0.10 0.96 1.10 0.97 1.00
Furnas 16 1.04 0.26 1.05 0.98 1.02 0.13 0.98 1.05 0.98 1.01
Scotts BluJ 66 1.03 0.13 1.04 1.01 1.03 0.16 1.01 1.01 1.01 1.03
Pierce 16 1.00 0.25 1.02 0.96 1.00 0.14 0.96 1.01 0.97 0.98
Harlan 10 0.99 0.31 1.02 0.95 1.00 0.12 0.95 1.03 0.96 0.97
Merrick 16 0.99 0.25 1.01 0.96 1.00 0.13 0.96 1.00 0.96 0.98
Custer 29 0.98 0.18 0.99 0.96 0.99 0.13 0.96 1.00 0.96 0.97
Lincoln 52 0.98 0.14 0.98 0.96 0.98 0.11 0.96 0.98 0.97 0.97
Saline 26 0.98 0.19 0.99 0.96 0.99 0.16 0.96 0.98 0.96 0.97
Johnson 11 0.96 0.29 0.98 0.94 0.99 0.14 0.94 0.99 0.95 0.95
Knox 24 0.96 0.20 0.97 0.95 0.98 0.13 0.95 0.98 0.95 0.95
Colfax 19 0.95 0.22 0.96 0.94 0.98 0.13 0.94 0.95 0.94 0.95
Pawnee 10 0.95 0.30 0.98 0.94 0.99 0.13 0.94 1.00 0.95 0.95
Sioux 3 0.95 0.55 1.04 0.93 1.00 0.10 0.93 1.08 0.95 0.95
Nuckolls 14 0.94 0.25 0.96 0.93 0.98 0.15 0.93 0.97 0.94 0.94
Box Butte 17 0.92 0.22 0.94 0.93 0.97 0.13 0.93 0.95 0.93 0.93
Valley 12 0.92 0.27 0.95 0.92 0.97 0.09 0.93 0.96 0.94 0.93
York 24 0.92 0.19 0.94 0.93 0.96 0.15 0.93 0.93 0.93 0.93
Cass 28 0.90 0.17 0.91 0.91 0.94 0.12 0.91 0.89 0.92 0.91
Webster 11 0.90 0.27 0.93 0.92 0.97 0.14 0.92 0.95 0.93 0.92
Dawson 33 0.87 0.15 0.88 0.89 0.92 0.11 0.89 0.89 0.90 0.89
Wayne 12 0.86 0.25 0.89 0.90 0.95 0.11 0.90 0.89 0.91 0.89
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Table 1 (continued)

County O SMR SD Log-Normal
(SMR) Gamma model model

ML ALT MOM SD(MOM) EF EFC EM ML

Otoe 26 0.85 0.17 0.87 0.88 0.92 0.13 0.88 0.87 0.89 0.87
Polk 12 0.84 0.24 0.87 0.89 0.94 0.14 0.89 0.89 0.90 0.87
Brown 7 0.83 0.31 0.88 0.90 0.96 0.13 0.90 0.93 0.91 0.88
Sarpy 47 0.82 0.12 0.82 0.84 0.87 0.13 0.84 0.91 0.85 0.83
Washington 21 0.82 0.18 0.84 0.87 0.91 0.10 0.87 0.82 0.88 0.85
Dakota 17 0.80 0.19 0.82 0.86 0.90 0.13 0.86 0.76 0.88 0.84
Fillmore 11 0.80 0.24 0.83 0.87 0.93 0.07 0.87 0.86 0.89 0.85
Keith 13 0.80 0.22 0.83 0.87 0.92 0.13 0.87 0.86 0.89 0.85
Cheyenne 14 0.79 0.21 0.82 0.86 0.91 0.12 0.86 0.85 0.88 0.84
Blaine 1 0.77 0.77 1.00 0.92 0.99 0.08 0.92 1.07 0.93 0.92
Cedar 16 0.76 0.19 0.78 0.84 0.89 0.12 0.84 0.81 0.86 0.81
Dawes 11 0.76 0.23 0.79 0.85 0.91 0.12 0.85 0.84 0.87 0.82
Cherry 9 0.75 0.25 0.79 0.86 0.91 0.12 0.86 0.85 0.88 0.82
Dixon 10 0.75 0.24 0.78 0.85 0.91 0.13 0.85 0.82 0.87 0.82
Thayer 14 0.75 0.20 0.77 0.84 0.89 0.15 0.84 0.81 0.86 0.81
BuJalo 35 0.74 0.12 0.75 0.79 0.82 0.10 0.79 0.75 0.81 0.77
Hall 56 0.74 0.10 0.75 0.78 0.80 0.12 0.78 0.70 0.79 0.76
Hamilton 11 0.72 0.22 0.75 0.83 0.89 0.10 0.83 0.79 0.86 0.80
Madison 1 0.71 0.71 0.95 0.91 0.99 0.14 0.91 0.69 0.93 0.91
Thurston 8 0.71 0.25 0.76 0.85 0.91 0.14 0.85 0.80 0.87 0.81
Rock 3 0.70 0.41 0.81 0.88 0.96 0.14 0.89 0.92 0.91 0.86
JeJerson 15 0.68 0.18 0.71 0.79 0.84 0.12 0.79 0.74 0.82 0.75
Perkins 5 0.66 0.30 0.73 0.85 0.92 0.12 0.85 0.82 0.88 0.81
Richardson 16 0.66 0.16 0.68 0.77 0.82 0.11 0.77 0.71 0.80 0.73
Sheridan 10 0.65 0.21 0.69 0.80 0.86 0.07 0.80 0.75 0.83 0.76
Loup 1 0.64 0.64 0.89 0.90 0.98 0.07 0.91 1.02 0.92 0.89
Dundy 4 0.63 0.31 0.71 0.85 0.92 0.03 0.85 0.82 0.88 0.81
Gosper 3 0.63 0.37 0.74 0.87 0.94 0.15 0.87 0.86 0.89 0.83
Howard 8 0.62 0.22 0.66 0.80 0.86 0.12 0.80 0.73 0.84 0.75
Phelps 11 0.61 0.18 0.64 0.77 0.83 0.11 0.77 0.69 0.81 0.72
Greeley 4 0.58 0.29 0.66 0.83 0.90 0.12 0.83 0.78 0.87 0.78
Seward 15 0.58 0.15 0.60 0.72 0.77 0.13 0.72 0.63 0.77 0.67
Banner 1 0.57 0.57 0.83 0.90 0.97 0.07 0.90 0.98 0.92 0.87
Nemaha 9 0.57 0.19 0.60 0.76 0.82 0.11 0.76 0.66 0.80 0.70
Red Willow 12 0.57 0.17 0.60 0.74 0.79 0.12 0.74 0.65 0.78 0.68
Chase 5 0.55 0.25 0.62 0.80 0.87 0.11 0.80 0.72 0.84 0.74
Wheeler 1 0.53 0.53 0.79 0.89 0.97 0.12 0.89 0.96 0.91 0.86
Nance 5 0.52 0.23 0.59 0.79 0.86 0.10 0.79 0.69 0.83 0.73
Butler 9 0.47 0.16 0.51 0.69 0.76 0.10 0.70 0.58 0.76 0.63
Morrill 5 0.44 0.20 0.50 0.74 0.81 0.10 0.74 0.61 0.80 0.67
Hayes 1 0.39 0.39 0.63 0.86 0.94 0.12 0.86 0.85 0.89 0.82
Key Paha 1 0.37 0.37 0.60 0.86 0.94 0.07 0.86 0.84 0.89 0.81
Hitchcock 3 0.35 0.20 0.44 0.74 0.82 0.15 0.74 0.59 0.82 0.67
Frontier 2 0.32 0.23 0.44 0.77 0.85 0.18 0.77 0.63 0.84 0.71
Garden 1 0.15 0.15 0.28 0.72 0.81 0.12 0.72 0.52 0.84 0.69
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Table 1 (continued)

County O SMR SD Log-Normal
(SMR) Gamma model model

ML ALT MOM SD(MOM) EF EFC EM ML

Boyd 1 0.13 0.13 0.24 0.68 0.77 0.06 0.68 0.45 0.83 0.66
Sherman 1 0.11 0.11 0.21 0.65 0.74 0.11 0.65 0.40 0.82 0.65
Arthur 0 0.00 0.00 0.60 0.88 0.96 0.03 0.88 0.92 0.91 0.84
Grant 0 0.00 0.00 0.52 0.86 0.95 0.11 0.87 0.87 0.90 0.83

O: observed values for 1990 and 1991 combined, SMR: SMR for 1990 and 1991 combined, SD(SMR):
estimated standard deviation of the SMR, ML: maximum likelihood method (2.1), ALT: alternate Method
(2.2), MOM: method of moments (2.3), SD(MOM): boostrap estimated standard deviation, MOM method,
EF: estimating functions (2.4), EFC: Estimating Functions using covariates (3), EM: EM algorithm for
Log-Normal model (4).

Table 2
Summary of estimators

Estimator Minimum 1st Quartile Median 3rd Quartile Maximum Mean Standard deviation

SMR 0.00 0.64 0.83 1.04 2.60 0.87 0.40

Gamma model
ML 0.21 0.73 0.88 1.05 2.18 0.92 0.33
ALT 0.65 0.84 0.90 0.96 1.63 0.93 0.15
MOM 0.74 0.90 0.96 1.02 1.62 0.97 0.14
EF 0.65 0.84 0.90 0.96 1.63 0.93 0.15
EFC 0.40 0.80 0.92 1.08 1.71 0.95 0.25

Log-Normal model
EM 0.76 0.87 0.91 0.98 1.65 0.95 0.14
ML 0.63 0.81 0.89 1.01 1.77 0.94 0.21

Clayton and Kaldor (1987) examined lip cancer in Scotland and found the CAR
model produced similar estimates to the Log-Normal model except for counties in
which the observed value was small and the SMR was dramatically diJerent than
the surrounding counties. A similar pattern was seen in prostate cancer incidence in
Nebraska. For example, the SMR for Madison county was 0.71 based on 1 observed
case of prostate cancer, much lower than its neighboring counties of Boone (1.58),
Platte (1.40), Antelope (1.32), Stanton (1.13) and Pierce (1.00). The estimated SMR
under the Log-Normal model (0.93) was lower than the estimate under the CAR model
(1.15) (Cowles et al., 1999).

The measure of uncertainty for the MOM estimates was estimated using the boot-
strap approach described in Section 6.1. The standard deviation using the bootstrap
approach (SD(MOM)) was more stable (range: 0.03, 0.19) than the estimated standard
deviation of the SMR (SD(SMR)) (range: 0, 1.30). The value of SD(MOM) was less
than SD(SMR) except when the SMR is zero, in which case SD(SMR) is incorrectly
estimated to be 0.
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Fig. 1. Nebraska prostate cancer incidence, 1990–1991, SMR.

Fig. 2. Nebraska Prostate Cancer Incidence, 1990–1991 empirical Bayes smoothing SMR using MOM.

Fig. 1 displays the ratio of the county SMR to the state SMR for the incidence of
prostate cancer in Nebraska for years 1990–1991. Counties with an SMR higher than
the state SMR are shaded. There were 15 counties with an SMR over 1.25 of the
state SMR and 10 counties with an SMR between 1.01 and 1.25 of the state SMR.
Fig. 2 displays the ratio of the empirical Bayes MOM estimate to the state SMR. After
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smoothing the SMR, there were 4 counties (Dodge, Holt, McPherson and Platte) with
smoothed SMRs over 1.25 of the state SMR and 21 counties with smoothed SMRs
between 1.01 and 1.25 of the state SMR. Note from Figs. 1 and 2 that counties with
higher incidence rates are often contiguous. Cowles et al. (1999) applied the CAR
procedure and found there were 2 counties (Dodge and McPherson) with smoothed
SMRs over 1.25 of the state SMR after accounting for spatial correlation.

Appendix A

Theorem A.1. (a) The optimal choice for ai(’), denoted by aopt
i (’), which minimizes

Var[f(’;O)] subject to
∑m

i=1 ai(’) = 1 is given by

aopt
i =

%−1
i∑m

i=1 %−1
i

for i = 1; : : : ; m.
(b) The optimal choice for cki(’), denoted by copt

ki (’), which minimizes Var[gk(’;O)]
subject to

∑m
i=1 [(@�i=@bk)cki(’)] = 1 is given by

copt
ki (’) =

[(@�i=@bk)hi]−1∑m
i=1 h−1

i

;

where hi =(1+3�i +3�2
i (ei +2=�i)+6ei�2

i =�
2
i )=(�i +�2

i ei)−1; �i =x′i b and �2
i =(x′i b)2=�

for i = 1; : : : ; m.

The following Lemma due to Lahiri and Maiti (2000) is needed to prove Theorem
A.1.

Lemma A.1. The optimal choice of ai (i=1; : : : ; m) which minimizes
∑m

i=1 a2
i Vi subject

to
∑m

i=1 ai = 1 is given by

ai =
V−1
i∑m

i=1 V
−1
i

:

Proof. The Lemma follows from the fact that

m∑
i=1

a2
i Vi =

m∑
i=1

Vi

(
ai − V−1

i∑m
i=1 V

−1
i

)2

+

(
m∑
i=1

V−1
i

)−1

since
∑m

i=1 ai = 1.

Proof of Theorem A.1. First note that unconditionally, Oi follows a negative binomial
distribution with mean ei�=�i and variance ei�=� + e2

i �=�
2
i . Thus Var(�̂i) = %i and

Var(�̂i−�i)2=%i =hi using the formula for moments of a negative binomial distribution.
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Theorem A.1 (a) follows from Lemma A.1 by noting that Var[f(’;O)]=
∑m

i=1 a2
i (’)%i.

Since Var[gk(’;O)] =
∑m

i=1 [(@�i=@bk)cki]2hi, by Lemma A.1 the optimal choice of
[(@�i=@bk)cki] which minimizes Var[gk(’;O)] subject to

∑m
i=1 [(@�i=@bk)cki(’)] = 1 is

(@�i=@bk)c
opt
ki (’) = h−1

i =
∑m

i=1 h
−1
i and thus

copt
ki (’) =

[(@�i=@bk)hi]−1∑m
i=1 h−1

i

:
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