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Abstract

A comparison was made of three small-area sampling methods [two traditional design-based

methods (ratio-synthetic, sample-size dependent) and one model-based method (EBLUP)] in

estimation of some cow and sow population productivity parameters. Performance was evaluated in

estimating both farm-specific mean responses and mean animal response over all farms using

sample sizes of 100 and 25. Differences in results obtained with the cow and sow data are discussed

in terms of the impact of sample size and population size on sampling method. There was a

tendency for the model-based method to be the best performer in situations most likely to be

operational when the sampling is done as part of a food–animal monitoring scheme. The situations

are identified where the sample-size-dependent method performed best. # 2002 Elsevier Science

B.V. All rights reserved.
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1. Introduction

Efficient sampling methodology will play an important role in achieving a level of

monitoring of food–animal populations that comes close to the level achieved for some

human populations. This is because the resources available for monitoring food–animal

populations are only a very small fraction of those available for monitoring human

populations. Our assessment of using composite estimation with two-stage repeated

sample designs (Holt and Farver, 1992; Farver et al., 1997) revealed only moderate gains

in efficiency relative to simple estimation in estimating the total response at each occasion
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and the total response over a sequence of successive measurement occasions. This was

because intraclass correlations were too low in most cases to counteract the low correlation

over time of corresponding animal responses. However, sizeable gains in relative efficiency

were observed for estimating the difference between means or totals on successive

measurement occasions because for several parameters, the responses at the farm level

had high correlations over time.

One of the challenges associated with large-scale monitoring is to provide very accurate

estimates of parameters for the population as a whole—but also for subpopulations (called

‘‘domains’’). These domains could be farms, counties or regions in a national monitoring

scheme for health and productivity of food–animal populations. Often the sample sizes for

the domains are so small that the standard errors at the domain level are too large to be

useful; there might be no samples at all for some domains of interest. Ghosh and Rao

(1994) gave a review of the so-called ‘‘small-area-estimation methods’’ which have

evolved relatively recently for providing estimates for domains with small sample sizes.

They appraised five alternative methods: synthetic, sample-size dependent, empirical best

linear unbiased prediction (EBLUP), empirical Bayes and hierarchical Bayes estimation.

Each of these methods makes use, in different ways, of information obtained from a census

of the population at some starting or base time to estimate response parameters at a

subsequent time. In the context of monitoring a population, the desired response para-

meters would be estimated multiple times using repeated measurement of the population

after the base time. It is conventional to designate the base response as x and a subsequent

response as y. Thus, an element sampled from the population would have an x-value and a

vector of y-values (one y for each time the response was recorded after the base time).

Ghosh and Rao (1994) included a comparison of small-area-estimation methods using an

example based on a single sample of 38 response pairs (x, y) drawn from a synthetic

population of size M ¼ 114 subjects divided across 16 small areas. The results seemed to

favor model-based methods (EBLUP, empirical Bayes and hierarchical Bayes estimation)

over the traditional design-based methods (synthetic and sample-size-dependent estima-

tion). I undertook a more stringent evaluation of three of the small-area techniques

compared by Ghosh and Rao; I used repeated sampling of the small domains at multiple

times after the base period. The evaluation was made using a larger and a smaller sample

size. My intention was also to provide direction for their use with some responses that

commonly would be encountered in a large-scale evaluation of the productivity of food–

animal populations.

2. Recent literature in small-area estimation

Four papers focus on various aspects of Baysian small-area estimation. Datta and Lahiri

(1995) developed a robust hierarchical Bayes method to smooth small-area means when

information is available on covariates; the procedure reduced the impact of outliers.

The paper by Farrell et al. (1997) relates to the prediction of small-area rates and

proportions from auxiliary variables using nonlinear model-based approaches. These

authors put forth an empirical Bayes method that uses only small-area summary statistics

for both continuous and categorical predictor variables (rather than, more restrictively,
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microdata from all individuals in a small area). Ghosh et al. (1998) extended the case of

Baysian methods in solving small-area estimation problems when the survey data includes

discrete and/or categorical variables. Yasui et al. (2000) compared various prior distribu-

tions that could be placed on area-specific risks in Baysian estimation of small area disease

risks.

Three papers deal with the error of small-area estimators. Lahiri and Rao (1995)

demonstrated the robustness of the Prasad–Roa estimator of the MSE (1990) (Prasad and

Rao, 1990) of the EBLUP estimator under the Fay–Herriot model (1979) (Fay and Herriot,

1979) with respect to nonnormality of the small-area means. Singh et al. (1998) reviewed

and compared (both analytically and empirically) Baysian and frequentist approaches to

modification of the MSE to account for the extra variability induced by the usual need to

estimate the variance components of small-area estimates. Datta and Lahiri (2000)

provided an approximation to the MSE of the EBLUP estimator; their approximation

is valid for a number of variance component methods including maximum likelihood and

residual maximum likelihood (Cressie, 1992; Dick, 1995). Longford (1999) applied

shrinkage estimators (both univariate and multivariate, the latter proposed by the author)

to UK census data.

3. Materials and methods

Three small-area sampling estimators were evaluated: the ratio-synthetic (RS) estimator,

the sample-size dependent (SD) estimator and the EBLUP estimator. These three small-

area estimators were evaluated on repeated samples taken from two data sets: one with

repeated monthly measurements on cows and the second with repeated parity measure-

ments on sows. The cow responses were collected at eight times during the milk-

production cycle from a population of 290 cows from 16 farms. The cow responses used

were milk (pounds of milk produced by a cow in a 24 h period), fat-corrected milk (FCM,

milk adjusted to a standard 3.5%-fat basis), butterfat (%fat), somatic-cell count (SCC) and

linear score of SCC (L2). The sow responses used were gestation length, number live-born,

birth weight, and weaning weight which were collected at five birthing from a population

of 497 sows from 18 piggeries. More details about the cow and sow populations sampled

are given in Table 1.

One set of 100 simple random samples (without replacement) of 100 cows (represen-

tative of a larger sample size) and a second set of 25 simple random samples of 100 cows

(representative of a smaller sample size) were obtained from the population of cows using

the random generator of BMDP.1 Parallel sets of 100 simple random samples were

similarly obtained from the population of sows. Each set of 100 simple random samples

was processed separately but in the same manner as follows: a program was written using

the SAS System2 to obtain (based on each sample generated) the RS, SD and EBLUP

estimates of the population farm-specific mean response values (milk, FCM, butterfat, SCC

and L2 for cows and gestation length, number live-born, birth weight, and weaning weight

1 BMDP Statistical Software Inc., Los Angeles, CA.
2 SAS Institute Inc., Cary, NC.
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for sows) at each time period subsequent to the first time period. Sample responses

recorded at and/or population values (census information) of the first time period were used

as base information for all estimates obtained at subsequent time periods as shown in

Eqs. (1)–(4) below.

The RS estimator (Purcell and Linacre, 1976; Ghangurde and Singh, 1977), in the

context of the present repeated measurement scheme, has the form

m̂RS
yji

¼
yj

x

� �
mxi

(1)

where m̂RS
yji

is the RS estimate of the mean response at time j for the ith farm; m the total

number of animals in the sample (henceforth, referred to as the ‘‘sample size’’); yj the

sample mean response at time j of the m animals selected; x the sample mean response at

the base time of the m animals selected and mxi
the mean response at the base time for the ith

farm.

This states that the farm-specific mean estimate at time j—whether or not the farm has

been sampled at time j—is obtained by multiplying the population mean observed for the

farm at the base time by the ratio of the sample mean response at time j of the m animals

selected (from all farms sampled at j) to the sample mean response at the base time of the m

animals selected. This is the classic ratio estimator (Cochran, 1977; Lohr, 1999; Scheaffer

Table 1

Number of cows and sows from participating farms; distribution by farm of days in milk for cows at first

monthly measurement

Dairy Swine

Farm No. of cows Days in milk, median, range Farm No. of sows

1 19 32, 18–24 1 29

2 22 34, 19–49 2 29

4 12 38, 26–66 8 31

5 17 21, 15–43 24 27

7 12 33, 15–49 26 12

8 18 33, 17–49 30 28

9 20 32, 16–50 40 15

10 21 31, 18–50 43 40

11 16 30, 16–38 44 40

12 19 35, 15–46 51 19

13 18 33, 22–48 58 19

16 18 25, 16–65 59 34

18 21 27, 15–36 61 20

19 20 25, 16–48 63 38

20 9 26, 18–49 66 22

21 28 29, 16–43 68 38

70 28

107 28

Overall 290 31, 17–47a 497

a Central 90% of the distribution.
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et al., 1996) deriving efficiency from the auxiliary information provided at the base time.

Typical of ratio estimators, the gain in precision might be offset by bias (particularly in

cases of small sample sizes).

The SD estimator (Drew et al., 1982) has the form

if fi � Fi then

m̂SD
yji

¼ m̂REG
yji

¼ yji þ
yj

x

� �
ðmxi

� xiÞ (2)

if fi < Fi then

m̂SD
yji

¼ fi

Fi

ðm̂REG
yji

Þ þ 1 � fi

Fi

� �
m̂RS

yji
(3)

where fi ¼ ðmi=mÞ, mi is the total number of animals sampled from the ith farm,

0 � mi � Mi; m ¼
PN

i¼1mi, the total number of animals in the sample, the sample size;

N the total number of farms in the population; Fi ¼ ðMi=MÞ, Mi the total number of animals

on the ith farm; M ¼
PN

i¼1Mi, the total number of animals in the population; m̂SD
yji

the SD

estimate of the mean response at time j for the ith farm; m̂REG
yji

a ‘‘survey-regression’’

estimate of the mean response at time j for the ith farm; yji the sample mean response at the

jth time for the ith farm; yj the sample mean response at time j of the m animals selected; x

the sample mean response at the base time of the m animals selected; mxi
the mean response

at the base time for the ith farm; xi the sample response at the base time for the ith farm

(using the mi animals selected from the ith herd); m̂RS
yji

the RS estimate of the mean response

at time j for the ith farm.

This states that if the proportion of animals from a farm in a sample is equal to or greater

than the proportion of animals from that farm in the total population of animals, the SD

estimator is the classic regression estimator (Cochran, 1977; Lohr, 1999; Scheaffer et al.,

1996). If the proportion of animals from a farm in a sample is less than the proportion of

animals from that farm in the total population of animals, the SD estimator is the weighted

composite of the regression estimator and the RS estimator with the weights being fi/Fi and

1 � fi=Fi, respectively. Note that if none of the animals of a farm is selected in the sample

(i.e. fi ¼ 0), the SD estimator for that farm is the RS estimator.

The EBLUP estimator (Robinson, 1991; Harville, 1991) has the following form

m̂EBLUP
yji

¼ fiyji

first component

þ ð1 � fiÞ½b̂1j þ b̂2jm
	
xi



second component

þ ð1 � fiÞ½yjiw � b̂1j � b̂2jxiw
ĝji

third component

(4)

where m̂EBLUP
yji

is the EBLUP estimate of the mean response at time j for the ith farm; fi ¼
ðmi=mÞ, mi the sample size of ith sampled farm, m the total number of animals in the sample,

the sample size; yji the sample mean response at the jth time for the ith farm; b̂1j and b̂2j are

the estimated slope parameters from regression 3 given in Appendix A; m	xi
the mean

base response for unsampled units of the ith farm; yjiw ¼
Pmi

k¼1ðyjik=xikÞ=
Pmi

k¼1ð1=xikÞ;
xiw ¼ mi=

Pmi

k¼1ð1=xikÞ; r̂ji ¼ ŝ2
vj
=ðŝ2

vj
þ ŝ2

ej
=wji:Þ, ŝ2

vj
; ŝ2

ej
and wji: are defined in Appendix A.

Although much more complex than the RS and SD estimators, the EBLUP estimator is

also a weighted composite estimator. As will be shown below, the first and second

components carry the most weight. The first component makes use of the farm-specific
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means observed at the given recording j and the second component makes use of the mean

base response of the animals that are not sampled at recording j.

The mean of each sampling distribution of 100 farm-specific mean estimates was

computed along with its standard error. Also, for each sample generated, the mean animal

response over all farms was computed as the weighted (by the population farm size, Mi)

mean of the farm-specific estimates. Average relative errors (AREs) and average squared

errors (ASEs) (Ghosh and Rao, 1994) were computed as follows:

ARE ¼ 1

N

PN
i¼1jm̂est:

yji
� myji

j
myji

; ASE ¼
XN

i¼1

ðm̂est:
yji

� myji
Þ2

where N is the number of herds; m̂est:
yji

the estimated mean response at time j for the ith farm;

‘‘est.’’ designates the RS, SD or EBLUP estimate; myji
the mean response at time j for the ith

farm.

The mean of each distribution of 100 overall farm mean estimates, of 100 ARE

(i.e. mean ARE) and 100 ASE (i.e. mean ASE) were obtained.

The effect of sample size on the results was evaluated as follows: an ‘‘estimation event’’

was defined as the estimation of one farm-specific mean response at one recording (for cow

data) or one birthing (for sow data). In the case of the cow data, for each response variable,

there were 16 farms for which farm-specific estimates of the mean response were made at

seven recordings (recordings 2–8) for a total of 112 estimation events. In the case of the

sow data, for each response variable, there were 18 farms for which estimates were made at

four birthing (2–5) for a total of 72 estimation events. It is important to remember that a

farm-specific mean is the mean of 100 means obtained by re-sampling the population 100

times. For each response variable, a frequency distribution was obtained by classifying

each estimation event jointly by the estimator (RS, SD or EBLUP) providing the mean

closest to the parameter being estimated using a sample size of 100 and using a sample size

of 25. The Stuart–Maxwell test for independence of frequency distributions with matched

pairs (Stuart, 1955; Maxwell, 1970; Fleiss and Everitt, 1971; Fleiss, 1981) was used to

determine whether there was any significant change in estimator performance with a

reduction in sample size from 100 to 25.

Two quantities were computed to assess the impact, over the 100 samples, of the

regression estimator on the SD estimation for each farm. One quantity computed is what I

call the ‘‘impact percentage’’ of the regression estimator on the SD farm-specific estimates.

As noted above, the SD farm-specific estimate from a sampling trial had no component

derived from the regression component when none of the animals of the given farm were

included in the sample ðmi ¼ 0Þ. This was regarded as a failure and a score of 0 was given

to that trial. In a sampling trial when fi � Fi, the SD farm-specific estimate was based

solely on the regression estimator. This was regarded as a success and a score of 1 was

given to that trial. In a trial when mi > 0 and fi < Fi, the SD farm-specific estimate had a

component based on the regression estimator and a component based on the RS estimator

weighted by fi/Fi and 1 � fi=Fi, respectively. This was regarded as a partial success and

a score of fi/Fi was given to the trial. The mean of these trial-specific scores over the

100 trials (multiplied by 100) is the impact percentage of the regression estimator on the

SD farm-specific estimates.
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Another quantity computed was the percentage of the 100 SD estimates having a

regression-estimator component. This is the percentage of successes or partial successes in

the 100 trials.

4. Results and discussion

4.1. Estimation of farm-specific mean animal response

Table 2 gives detailed results observed for milk with a sample size of 100. For space

conservation, I have presented the estimates predicted at the 2–5 recordings only. These

results are typical of those observed for the other cow responses. Note that the estimation

procedures use sample or census information from the first recording to estimate the

parameters at subsequent recordings. The results presented in Table 3 are the complete set

of results observed for number of live-born piglets with a sample size of 100 and are typical

of those observed for the other sow responses. The complete set of results obtained for

all of the cow and sow responses using samples sizes of 100 and 25 are available from the

author upon request.

Table 4 summarizes, from the complete set of such tables, the performance of the three

estimators in estimating the farm-specific mean cow and sow responses. Table 4 gives, for

each response variable, the frequency distribution obtained by classifying each estimation

event (see definition given in Section 3) jointly by estimator (RS, SD or EBLUP) providing

the mean closest to the parameter being estimated using a sample size of 100 and using a

sample size of 25. For example, Table 4 shows that in estimating total milk, there were 63

estimation events in which the SD estimate was closest to the parameter being estimated

using samples sizes of both 100 and 25, six estimation events in which the SD estimate was

closest to the parameter being estimated using a sample size of 100 and the RS estimate was

closest to the parameter being estimated using a sample of size 25, and nine estimation

events in which the SD estimate was closest to the parameter being estimated using a

sample size of 100 and the EBLUP estimate was closest to the parameter being estimated

using a sample size of 25.

4.1.1. Large sample results

One finding exhibited in Table 4 is that when using a sample size of 100, the SD

estimator provided estimates closest to the parameter being estimated in most of the

estimation events using the cow data—but the EBLUP estimator provided estimates closest

to the parameter being estimated in most of the estimation events using the sow data.

Specifically, the SD estimator produced a farm-specific mean estimate that was closest to

the farm-specific population mean in 73% of the estimation events involving all five of the

cow responses using a sample size of 100 (Table 4), while the EBLUP estimator produced

an estimate that was closest to the farm-specific population mean in 66% of the estimation

events involving all four of the sow responses using a sample size of 100 (Table 4). I believe

this difference in estimator performance with the cow and sow data when using a sample of

size 100 relates to the difference in population sizes. With a sample size of 100, there

remain 190 unsampled cows—but 397 (twice as many) unsampled sows. This is an
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Table 2

Comparison of RS, SD and EBLUP estimates of cow total milk (pounds/day) at four times during lactation

(ma ¼ 100)

Farm Second recording Third recording Fourth recording Fifth recording

m2 RS2 SD2 EBLUP2 m3 RS3 SD3 EBLUP3 m4 RS4 SD4 EBLUP4 m5 RS5 SD5 EBLUP5

1 89.1b 86.1c 89.2d 86.8 87.9 83.1 87.5 84.3 74.4 76.6 74.3 74.3 70.8 71.4 71.1 69.9

0.13e 0.43 0.24 0.14 0.44 0.26 0.15 0.57 0.30 0.14 0.35 0.18

2 72.9 74.5 72.5 74.6 73.4 71.9 72.4 73.4 71.9 66.3 70.4 69.6 64.8 61.8 63.5 64.3

0.11 0.38 0.21 0.12 0.40 0.23 0.13 0.30 0.18 0.12 0.47 0.25

3 88.5 83.1 87.8 85.4 78.7 80.3 79.0 79.2 76.1 74.0 75.4 74.0 66.6 68.9 67.3 67.5

0.13 0.79 0.41 0.14 0.51 0.20 0.14 0.67 0.29 0.14 0.68 0.25

4 70.1 68.6 70.2 71.7 69.2 66.3 69.5 70.1 65.2 61.1 65.1 65.6 63.1 56.9 62.6 62.6

0.10 0.28 0.18 0.11 0.49 0.33 0.12 0.37 0.21 0.11 0.41 0.23

5 86.1 90.4 87.2 86.9 84.1 87.3 84.2 83.7 82.1 80.5 82.0 78.9 80.1 75.0 79.6 74.6

0.14 0.59 0.29 0.15 0.38 0.19 0.15 0.46 0.21 0.15 0.36 0.23

6 91.7 90.0 91.3 89.1 88.1 86.9 87.9 85.7 72.4 80.1 73.6 75.1 66.3 74.6 67.7 69.0

0.14 0.45 0.23 0.15 0.51 0.27 0.15 0.55 0.24 0.15 0.60 0.29

7 89.4 92.6 89.8 89.0 91.1 89.4 90.3 87.7 83.6 82.4 82.7 80.2 73.8 76.8 73.5 72.6

0.14 0.56 0.30 0.15 0.50 0.25 0.16 0.67 0.31 0.15 0.71 0.34

8 80.3 78.9 79.9 79.9 73.0 76.2 73.2 75.0 69.2 70.2 68.7 70.0 65.7 65.4 65.2 65.8

0.12 0.32 0.18 0.13 0.39 0.22 0.14 0.46 0.23 0.13 0.43 0.22

9 85.1 90.5 85.6 86.2 80.2 87.4 81.1 82.2 77.0 80.6 77.0 76.8 74.1 75.0 73.8 72.1

0.14 0.33 0.17 0.15 0.43 0.26 0.15 0.32 0.18 0.15 0.34 0.18

10 73.3 71.9 73.1 74.2 72.4 69.4 72.3 72.7 67.0 64.0 66.8 67.3 61.7 59.6 61.7 62.9

0.11 0.28 0.16 0.12 0.28 0.18 0.12 0.32 0.17 0.12 0.33 0.15

11 73.1 69.8 72.0 73.2 72.4 67.4 71.7 71.9 65.3 62.2 64.3 65.6 61.7 57.9 60.0 62.0

0.11 0.33 0.17 0.12 0.36 0.22 0.12 0.44 0.23 0.11 0.48 0.23

12 76.8 76.7 76.8 77.7 71.4 74.1 71.5 73.7 64.7 68.3 64.2 67.5 66.8 63.6 66.1 65.9

0.12 0.46 0.25 0.13 0.37 0.18 0.13 0.42 0.19 0.13 0.33 0.17

13 82.5 83.9 82.7 82.6 77.7 81.1 78.1 78.8 73.5 74.7 73.8 73.5 71.6 69.6 71.5 69.9

0.13 0.32 0.18 0.14 0.35 0.20 0.14 0.31 0.17 0.14 0.44 0.24

14 72.8 73.0 71.8 73.5 76.0 70.5 74.2 73.8 69.0 65.0 68.0 68.0 62.0 60.5 61.4 62.7

0.11 0.35 0.26 0.12 0.50 0.44 0.13 0.34 0.23 0.12 0.34 0.24

15 89.2 91.2 89.6 88.3 84.3 88.0 85.3 84.4 80.8 81.2 80.8 78.5 69.8 75.6 70.7 70.7

0.14 0.48 0.17 0.15 0.44 0.18 0.16 0.47 0.27 0.15 0.43 0.16

16 81.6 79.9 81.1 80.9 76.6 77.2 75.9 76.9 71.5 71.1 71.1 71.3 63.1 66.3 63.1 64.9

0.12 0.43 0.29 0.13 0.42 0.22 0.14 0.47 0.24 0.13 0.42 0.23

Meanf 80.8 80.6 80.6 80.7 78.1 77.9 77.9 77.9 72.2 71.8 71.8 71.8 67.1 66.9 66.9 66.9

Mareg 3.02 4.23 2.65 4.22 4.46 3.01 4.22 4.97 3.21 4.97 5.34 3.30

Maseh 9.46 19.87 7.65 14.99 18.64 9.23 13.47 21.47 8.70 16.61 21.46 8.59

a
Total number of responding animals over all herds.

b
Farm-specific population mean, the parameter being estimated.

c
Mean.

d
Italic values indicate mean (within recording) closest (to nearest hundredth pound) to estimated parameter.

e
Standard error (smallest for RS estimate within recording).

f
Over all herds.

g
Mare ¼ mean AREð%Þ.

h
Mase ¼ mean ASE.
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Table 3

Comparison of RS, SD and EBLUP estimates of number of live-born piglets at four birthing (ma ¼ 100)

Farm Second birthing Third birthing Fourth birthing Fifth birthing

m2 RS2 SD2 EBLUP2 m3 RS3 SD3 EBLUP3 m4 RS4 SD4 EBLUP4 m5 RS5 SD5 EBLUP5

1 11.7b 10.2c 8.5 10.3e 11.5 10.3 9.8 10.8 11.9 10.7 10.0 11.1 12.2 10.4 10.4 11.2

0.03d 0.10 0.04 0.03 0.12 0.05 0.03 0.09 0.04 0.03 0.11 0.07

2 10.3 11.0 11.0 10.6 11.5 11.1 11.6 11.1 11.2 11.5 11.4 11.1 11.5 11.2 11.8 11.3

0.03 0.11 0.04 0.03 0.12 0.06 0.03 0.15 0.05 0.04 0.13 0.07

3 9.7 11.2 11.9 10.8 10.2 11.3 11.3 10.6 10.9 11.6 12.0 11.1 10.5 11.4 11.6 10.8

0.03 0.12 0.05 0.03 0.09 0.05 0.03 0.12 0.07 0.04 0.12 0.06

4 10.2 10.7 10.7 10.5 10.1 10.8 10.5 10.5 10.8 11.1 11.1 10.9 10.9 10.8 11.1 10.8

0.03 0.12 0.03 0.03 0.12 0.05 0.03 0.13 0.05 0.04 0.12 0.04

5 10.3 9.6 8.6 10.2 10.7 9.7 9.7 10.4 11.3 10.0 10.1 10.8 10.2 9.8 9.3 10.4

0.03 0.11 0.04 0.03 0.10 0.05 0.03 0.12 0.05 0.03 0.17 0.07

6 11.3 10.4 9.1 10.3 10.9 10.5 9.9 10.7 11.9 10.8 10.8 11.2 11.7 10.6 10.5 10.9

0.03 0.11 0.05 0.03 0.12 0.05 0.03 0.09 0.05 0.04 0.09 0.07

7 10.1 11.2 11.4 10.6 9.9 11.2 10.7 10.5 10.7 11.6 11.3 10.9 11.6 11.3 12.2 11.2

0.03 0.12 0.05 0.03 0.14 0.06 0.03 0.10 0.04 0.04 0.14 0.05

8 10.2 10.9 10.7 10.5 10.6 10.9 10.8 10.7 9.8 11.3 10.3 10.7 10.6 11.0 10.8 10.7

0.03 0.09 0.04 0.03 0.10 0.04 0.03 0.09 0.05 0.04 0.09 0.04

9 10.0 11.0 11.3 10.5 9.9 11.1 10.9 10.4 10.8 11.4 11.5 11.0 10.3 11.2 11.0 10.5

0.03 0.08 0.04 0.03 0.07 0.05 0.03 0.08 0.04 0.04 0.08 0.05

10 9.4 10.7 11.2 10.5 10.2 10.8 10.9 10.5 9.9 11.1 11.0 10.8 9.4 11.0 10.5 10.3

0.03 0.11 0.03 0.03 0.10 0.04 0.03 0.11 0.04 0.04 0.12 0.05

11 10.4 8.4 6.1 9.6 10.2 8.4 7.3 10.0 10.1 8.7 8.0 10.4 9.5 8.5 7.4 10.0

0.03 0.19 0.09 0.02 0.13 0.06 0.02 0.14 0.05 0.03 0.13 0.05

12 9.4 10.8 11.6 10.5 9.7 10.9 10.7 10.2 10.2 11.2 11.4 10.8 10.3 11.0 11.5 10.7

0.03 0.09 0.04 0.03 0.10 0.06 0.03 0.10 0.04 0.04 0.12 0.06

13 10.5 11.9 12.5 10.9 12.0 12.0 13.0 11.5 12.6 12.4 13.5 11.7 12.1 12.1 13.0 11.3

0.04 0.17 0.06 0.03 0.15 0.06 0.03 0.17 0.07 0.04 0.13 0.07

14 11.9 12.5 12.3 11.1 12.2 12.6 12.4 11.6 11.6 13.0 12.0 11.4 10.8 12.7 11.3 10.8

0.04 0.07 0.05 0.03 0.08 0.05 0.03 0.08 0.04 0.04 0.09 0.04

15 8.4 10.5 11.7 10.4 9.8 10.6 11.3 10.4 10.3 10.9 11.8 10.8 8.8 10.7 10.2 9.9

0.03 0.14 0.05 0.03 0.11 0.05 0.03 0.13 0.05 0.04 0.18 0.09

16 10.0 11.5 12.2 10.8 11.1 11.5 12.3 11.2 11.5 11.9 12.5 11.3 11.4 11.6 12.4 11.2

0.03 0.10 0.04 0.03 0.10 0.05 0.03 0.13 0.06 0.04 0.10 0.06

17 10.5 9.8 8.6 10.1 10.5 9.9 9.4 10.3 11.5 10.2 10.4 11.0 11.0 10.0 9.9 10.7

0.03 0.12 0.05 0.03 0.10 0.04 0.03 0.10 0.03 0.03 0.10 0.05

18 8.9 11.7 13.5 10.9 9.6 11.8 12.2 10.6 10.6 12.2 13.1 11.1 9.8 11.9 12.2 10.4

0.04 0.10 0.04 0.03 0.11 0.06 0.03 0.10 0.04 0.04 0.12 0.08

Meanf 10.2 10.9 10.9 10.5 10.6 11.0 11.0 10.7 11.0 11.3 11.3 11.0 10.7 11.1 11.1 10.8

Mareg 12.66 21.50 9.15 8.56 12.67 5.55 8.86 12.59 5.35 9.38 13.03 6.13

Maseh 2.03 6.90 1.24 1.10 2.73 0.51 1.17 2.87 0.51 1.43 2.94 0.66

a
Total number (over all herds) of responding animals.

b
Farm-specific population mean, the parameter being estimated.

c
Mean.

d
Italic values indicate mean (within recording) closest (to nearest hundredth number) to estimated parameter.

e
Standard error (smallest for RS estimate within recording).

f
Over all herds.

g
Mare ¼ mean AREð%Þ.

h
Mase ¼ mean ASE.
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Table 4

For each response variable, the frequency distribution obtained by classifying each estimation eventa jointly by estimator (RS, SD or EBLUP) providing the mean closest

to the parameter being estimated with a sample sizes of 100 and 25b

Sample size of 25

Total milk FCMc Butterfat L2d SCCe

RS SD EBLUP RS SD EBLUP RS SD EBLUP RS SD EBLUP RS SD EBLUP

Sample size

of 100

RS 3 2 1 6 2 0 1 1 0 5 1 0 1 4 0

SD 6 63 9 8 57 16 5 71 12 9 43 24 8 45 33

EBLUP 2 11 15 1 10 12 1 2 19 2 5 23 0 5 16

pf 0.3 0.06 0.007 0.0001 <0.0001

Sample size of 25

Number live-born Birthing weight Weaning weight Gestation length

RS SD EBLUP RS SD EBLUP RS SD EBLUP RS SD EBLUP

Sample size

of 100

RS 5 1 0 5 0 2 8 0 0 15 0 1

SD 1 3 1 2 12 2 0 16 0 3 18 2

EBLUP 3 3 55 5 1 43 3 1 44 4 5 24

pf 0.10 0.17 0.14 0.055

a An estimation event is the estimation of one farm-specific mean response at one recording (for cow data) or one birthing (for sow data). In the case of the cow data,

for each response variable, there were 16 farms for which estimates were made at seven recordings for a total of 112 estimation events. In the case of the sow data, for

each response variable, there were 18 farms for which estimates were made at four birthing for a total of 72 estimation events.
b Cow data: total milk, FCM, butterfat, L2, SCC; sow data: number live-born, birthing weight, weaning weight, gestation length.
c Fat-corrected milk.
d Linear score of somatic-cell count.
e Somatic-cell count.
f p-Value for Stuart–Maxwell test for independence of frequency distributions with matched pairs.

3
2

2
T
.B

.
F

a
rver

/P
reven

tive
V

eterin
a

ry
M

ed
icin

e
5

2
(2

0
0

2
)

3
1

3
–

3
3

2



important difference in that the second component of the EBLUP estimator (Eq. (4)) makes

use of the mean base or reference response (the first recording in the case of the cow data or

the first birthing in the case of the sow data) for unsampled animals of each farm. Table 5

gives the mean component values over the estimation events for the cow and sow

responses. This table shows that with a sample size of 100, the second component for

the cow responses is approximately two times the first component whereas the second

component for the sow responses is approximately four times the first component. Use of

the base information from so many unsampled sows provided the EBLUP estimator with a

competitive advantage when estimating the sow parameters. The SD estimator does not

make use of information from unsampled animals.

Table 5

Effect of sample size on the mean component values of the EBLUP estimator (Eq. (4)) over all estimation

eventsa for the cow and sow responses

Response variable Sample size (m)b Component of Eq. (4) Total

First component Second component Third component

Cow data

Total milk 100 23.5 44.4 2.3 70.2

25 5.9 61.9 2.3 70.1

FCMc 100 24.1 45.7 0.0 69.8

25 6.1 63.8 �0.0 69.9

Butterfat 100 1.3 2.4 0.0 3.7

25 0.3 3.4 �0.0 3.7

L2d 100 1.0 1.9 �0.0 2.9

25 0.2 2.6 �0.0 2.8

SCCe 100 68.9 130.6 0.1 199.6

25 17.4 193.2 0.4 211.0

Sow data

Number live-born 100 2.2 8.6 �0.0 10.8

25 0.5 10.2 0.0 10.7

Birthing weight 100 7.2 28.1 �0.0 35.3

25 1.8 33.6 �0.0 35.4

Weaning weight 100 24.8 96.9 0.0 121.7

25 6.2 115.9 �0.0 122.1

Gestation length 100 23.3 91.9 �0.0 115.2

25 5.8 109.4 0.0 115.2

a An estimation event is the estimation of one farm-specific mean response at one recording (for cow data) or

one birthing (for sow data). In the case of the cow data, for each response variable, there were 16 farms for which

estimates were made at seven recordings for a total of 112 estimation events. In the case of the sow data, for each

response variable, there were 18 farms for which estimates were made at four birthing for a total of 72 estimation

events.
b Total number of responding animals over all herds.
c Fat-corrected milk.
d Linear score of somatic-cell count.
e Somatic-cell count.
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Table 6 shows that over all farms with m ¼ 100, the regression-impact percentage for

cows (87.2%) was significantly higher ðp ¼ 0:014Þ than that for sows (84.8%). Thus, the

cow SD farm-specific estimates would be relatively less biased than the corresponding SD

farm-specific estimates for sows because they are less contaminated by the RS component.

This most likely contributed to the difference noted in the performance of the SD estimator

when estimating the farm-specific mean responses using the cow and sow data with a

sample size of 100.

4.1.2. Effect of lowering the sample size from 100 to 25

The SD estimator provided the estimate closest to the cow parameter being estimated

using sample sizes of 100 and 25 in 49.8% of the total number of estimation events (over all

response variables). With the sow data, the EBLUP estimator provided the estimate closest

to the parameter being estimated using sample sizes of 100 and 25 in 57.6% of the total

number of estimation events. However, Table 4 shows that a reduction in sample size from

100 to 25 resulted in some movement away from the SD estimator in the case of the cow

data and away from the EBLUP estimator in the case of the sow data. Subjecting the

frequency tables for the cow responses to the Stuart–Maxwell test for independence of

frequency distributions with matched pairs (Stuart, 1955; Maxwell, 1970; Fleiss and

Everitt, 1971; Fleiss, 1981) revealed that a reduction in sample size from 100 to 25 resulted

in significant change in estimator performance in terms of producing a farm-specific mean

estimate that was closest to the parameter being estimated in the case of SCC ð p < 0:0001Þ,
L2 ð p ¼ 0:0001Þ, and butterfat ð p ¼ 0:007Þ and a marginally nonsignificant change in the

case of FCM ðp ¼ 0:06Þ. The same test applied to the frequency tables for the sow

responses revealed no significant change in estimator performance when the sample size

was reduced from 100 to 25, although the result for gestation length was only marginally

nonsignificant ðp ¼ 0:055Þ. Subsequent analyses recommended by Fleiss (1981) demon-

strated that for SCC, L2 and butterfat, the number of estimation events when the

SD-produced estimate was the closest to the parameter being estimated using a sample

size of 100 and either the EBLUP- or RS-produced estimate was closest to the parameter

being estimated using a sample size of 25 was highly significantly greater than the number

of estimation events when either the EBLUP- or RS-produced estimate was closest to

the parameter being estimated using a sample size of 100 and the SD-produced estimate

was the closest to the parameter being estimated using a sample size of 25. For each

response, the computed w2-value was nearly equal in magnitude to the corresponding

Stuart–Maxwell w2-value.

In searching for an explanation of the changes in estimator performance on the cow

responses observed with changes in sample size, I first focused on the impact of sample size

on the three components of the EBLUP estimator (Eq. (4)). Table 5 shows that for all cow

and sow responses, the first two components exhibited major changes when the sample size

was reduced from 100 to 25. For all responses, when the sample size was reduced from 100

to 25, the major decrease in the first component was compensated by a nearly equivalent

increase in the second component. Thus, the EBLUP estimates remained remarkably stable

when the sample size was reduced from 100 to 25.

The apparent stability of the EBLUP estimator over change in sample size helped to

direct attention to the SD estimator to explain the changes in estimator performance on the

324 T.B. Farver / Preventive Veterinary Medicine 52 (2002) 313–332



Table 6

Summary by cow and sow farm of the effect of sample size (m)a on the percentage of the 100 sampling trials for

which the SD estimator had a regression-estimator component and on the impact percentage of the regression-

estimator on the SD farm-specific estimates

Farm size Percentage of 100 sampling trials

for which the SD estimator had a

regression-estimator component

Impact percentageb of the r

egression-estimator on the

SD estimates over 100 trials

m ¼ 100 m ¼ 25 m ¼ 100 m ¼ 25

Cow farms

19 100 78 88.6 69.4

22 100 84 86.0 69.8

12 99 71 80.8 69.9

17 100 79 87.0 67.9

12 99 68 83.6 66.8

18 100 87 88.2 74.9

20 100 78 86.5 63.7

21 100 87 88.0 75.4

16 99 76 86.5 67.7

19 100 81 89.3 69.3

18 100 86 88.3 69.3

18 100 77 89.1 66.7

21 100 83 91.0 69.6

20 100 86 88.9 73.8

9 99 58 82.7 58.0

28 100 94 90.5 76.1

Mean 99.8 79.6 87.2 69.3

Sow farms

29 100 77 83.1 64.7

29 100 74 83.7 63.6

31 100 79 86.7 66.1

27 100 80 82.6 72.4

12 96 49 80.6 49.0

28 99 75 86.4 62.2

15 98 56 84.7 56.0

40 100 94 84.8 78.2

40 100 88 89.1 73.2

19 99 62 80.3 62.0

19 100 67 81.9 67.0

34 100 80 86.8 68.8

20 99 60 85.0 59.8

38 100 92 87.8 75.3

22 99 71 84.9 67.4

38 100 87 88.4 76.5

28 100 81 82.6 71.4

28 100 82 86.5 73.0

Mean 99.4 75.2 84.8 67.0

a Total number of responding animals over all herds.
b See text for method used to derive the impact percentage.
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cow responses observed with changes in sample size. In evaluating the performance of the

SD estimator, it is important to assess the influence of the regression estimator on the SD

estimator because a stronger regression-estimator influence means a weaker ratio-esti-

mator influence and hence a smaller chance for bias in the SD estimates. SD estimates

based on larger sample sizes most likely will have a component derived from the regression

estimator. Our results demonstrated this to be the case with a sample size of m ¼ 100.

Table 6 shows that for all cow and sow farms, with m ¼ 100, at least 96% and often 100%

of the 100 farm-specific SD estimates generated by repeated sampling of the farm

contained a component derived from the regression estimator. The mean percentage over

all cow farms (99.8%) did not differ significantly ð p ¼ 0:27Þ from that for sow farms

(99.4%). These percentages each dropped significantly ð p < 0:0001Þ when the sample size

was reduced to 25; 79.6% for cow farms and 75.2% for sow farms (Table 6).

The drop in sample size from 100 to 25 was accompanied by a highly significant

ðp < 0:0001Þ drop in the mean impact percentage of the regression estimator on the SD

farm-specific estimates from 87.2 to 69.3% for cow data and from 84.8 to 67.0% for sow

data. This represents a major increase in the impact of the RS component of the SD

estimator. Thus, the SD estimator is most likely to be more biased and hence ‘‘off-target’’

with the smaller sample size. This provided more opportunity for the EBLUP estimator

(whose second component increased sufficiently to compensate for a reduction in its first

component with the sample-size reduction) to be closer to the parameter being estimated.

This seems to be the most plausible explanation for the moderate decline in the

performance of the SD estimator with the cow data using a sample size of 25. It is not

an improvement in the EBLUP estimator but a decline in the performance of the SD

estimator (due to a greater impact of the RS estimator component) coupled with the

EBLUP estimator exhibiting little overall change.

I was unable to observe an easily interpretable relationship of the correlation between the

first recording and subsequent recordings for milk and the performance of the SD estimator.

The regression-estimator component of SD would be expected to perform best at high

correlations. Table 7 gives the correlations between the first recording and subsequent

recordings for all cow and sow variables. The table shows that the correlations observed for

milk were among the highest observed for the response variables considered. This might

have enabled milk to be more resistant to the movement from SD to EBLUP with a

reduction in sample size from 100 to 25. However, butterfat was as resistant as milk to the

movement from SD to EBLUP with sample-size change—but its correlations were

considerably lower. The correlations noted for SCC were very low and it was SCC that

exhibited the largest number of changes from SD to EBLUP. Yet, the second highest

number of changes from SD to EBLUP was noted for L2 which had moderate correlations

like butterfat. Change is clearly not solely a function of correlation because an inspection of

the 24 individual changes from SD to EBLUP observed for L2, e.g., revealed that only 14

of such changes were associated with relatively low correlations.

4.1.3. Standard errors

The smallest standard errors of the farm-specific means nearly always were observed with

the RS estimates. Considering the 736 estimation events of this study over all cow responses

except SCC ð16 farms � seven recordings � four responses ¼ 448 estimation eventsÞ and

326 T.B. Farver / Preventive Veterinary Medicine 52 (2002) 313–332



Table 7

Correlations (unadjusted and adjusted for farm) of cow response at first recording and subsequent recordings and of sow response at first birthing and subsequent birthing

Recording Milk FCMa Butterfat L2b SCCc

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Cow data

2 0.62 0.57 0.40 0.36 0.19 0.18 0.46 0.45 0.11 0.11

3 0.58 0.53 0.39 0.36 0.23 0.23 0.33 0.32 0.07 0.08

4 0.50 0.48 0.33 0.31 0.22 0.23 0.26 0.23 0.09 0.08

5 0.40 0.36 0.22 0.19 0.18 0.18 0.24 0.22 0.05 0.04

6 0.33 0.28 0.17 0.13 0.17 0.18 0.15 0.12 0.03 0.04

7 0.33 0.27 0.19 0.14 0.21 0.23 0.24 0.22 0.21 0.20

8 0.26 0.20 0.12 0.04 0.11 0.10 0.22 0.18 0.22 0.19

Median 0.40 0.36 0.22 0.19 0.19 0.18 0.24 0.22 0.09 0.08

Birthing Number live-born Birth weight Weaning weight Gestation length

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Sow data

2 0.08 0.07 0.17 0.16 0.11 0.13 0.39 0.30

3 0.19 0.17 0.19 0.15 0.12 0.10 0.40 0.32

4 0.20 0.20 0.23 0.18 0.15 0.11 0.41 0.37

5 0.20 0.20 0.25 0.22 0.07 0.04 0.39 0.37

Median 0.195 0.185 0.21 0.17 0.115 0.105 0.395 0.345

a Fat-corrected milk.
b Linear score of somatic-cell count.
c Somatic-cell count.
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all sow responses ð18 farms � four recordings � four responses ¼ 288 estimation eventsÞ,
the standard errors obtained with the RS estimates were the smallest in 99.0% of the

estimation events using a sample size of 100 animals. This percentage dropped only to

92.5% using a sample size of 25. The standard errors obtained with the EBLUP estimates

were the next smallest in 98.1 and 92.4% of the estimation events using sample sizes of 100

and 25, respectively. The standard errors for the EBLUP and SD estimates would be

expected to be larger than those of the RS estimates because the EBLUP and SD estimators

have multiple components (with error associated with each component)—whereas the RS

estimator is a single-component estimator. The finding that the EBLUP standard errors

were consistently smaller than those of the SD estimator is support for the use of the

EBLUP estimator in addition to that based on its strong performance in estimating the

farm-specific means reported above.

The standard error results for the SCC response were not parallel to those described

above for the other variables. Of the 112 estimation events involving SCC, the standard

errors obtained with the RS estimates were the smallest for 53.6% of the events and those

obtained with the EBLUP estimates were the smallest for 44.6% of the events using a

sample size of 100 animals. These percentages were 67.0% (RS) and 31.2% (EBLUP)

using a sample size of 25. I attribute these results to the extremely high variability in the

SCC responses of a cow, even within the same location.

4.2. Estimation of mean animal response over all farms

4.2.1. Mean over all farms

The complete results of the comparison of the RS, SD and EBLUP estimates of mean

animal responses over all farms are available upon request from the author. The following

summarizes these results:

Milk. With a sample size of 100, all three estimators gave the same overall farm mean

estimate of milk (to the nearest 10th of a pound) at six of the seven recordings. When the

sample size was reduced to 25, no single estimator demonstrated a clear advantage.

FCM. The EBLUP estimator generated the overall farm mean estimate closest to the

parameter being estimated in five of the seven recordings with a sample size of 100. At the

other two recordings, the EBLUP estimate was tied for being closest to the parameter being

estimated with that produced by RS in one case and by both of the other estimators in the

other case. The EBLUP estimator gave up some of this advantage to the SD estimator when

the sample size was reduced to 25.

Butterfat. The results obtained with a sample size of both 100 and 25 were not supportive

of any estimator.

L2. The EBLUP estimator generated the overall farm mean estimate closest to the

parameter being estimated at all seven recordings with a sample size of 100. When the

sample size was reduced to 25, the RS estimate was closest to the parameter being

estimated at four recordings.

SCC. With a sample size of 100, the RS estimates were closest to the parameter being

estimated at three recordings, the EBLUP at two recordings and the SD estimator at one

recording. The EBLUP estimator produced estimates closest to the parameter being

estimated at all seven recordings when the sample size was reduced to 25; all EBLUP
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estimates were considerably closer to the parameter being estimated than those produced

by the RS and SD estimators.

Sow responses. The EBLUP estimator provided the mean estimate closest to the overall

farm mean being estimated in 28 of 32 cases (four response variables � four birthing�
two sample sizes). This performance is reflective of the excellent performance by the

EBLUP estimator when estimating the farm-specific sow parameters.

It may seem surprising that the EBLUP estimator, which was definitively outperformed

by the SD estimator in estimating farm-specific mean cow responses using a sample size of

100, could perform as well or better than the SD estimator in estimating the mean over all

farms. Space does not permit detailing how this happened in the case of each cow response

variable, but some insight into what happened over all cow responses is obtained by

consideration of the L2 case with a sample size of 100, where, as noted above, the EBLUP

estimator was closest to the overall farm parameters being estimated at all seven

recordings. At the sixth recording, the EBLUP estimates were closest to the farm-specific

parameter being estimated for 11 of the 16 farms. So at this recording, the excellent

performance by the EBLUP estimator at the farm-specific level enabled it to produce an

overall farm estimate closest to the corresponding parameter being estimated. This is how

the EBLUP estimator was able to produce overall farm estimates closest to the corre-

sponding parameters being estimated in nearly all cases with the sow responses using both

large and small sample sizes.

A much different explanation has to be offered at the second recording where the SD

estimator was closest to the farm-specific parameter being estimated for 15 farms and the

RS estimator was closest for the remaining farm and yet the EBLUP estimator produced a

mean estimate over all farms that was closest to the overall farm mean being estimated. For

14 of the 16 farms, the SD and EBLUP estimator produced means that were both below

(eight farms) or both above (six farms) the parameter being estimated and the SD estimator

was closer to the parameter. But for the remaining two farms, with 12 and 21 cows,

respectively, the SD estimate was slightly below the parameter being estimated while the

EBLUP estimate was considerably above the parameter—enough above to pull the EBLUP

overall farm estimate closer to the parameter being estimated. This rather extreme result

was also seen at the third recording.

The results at the other recordings were more complex. For example, at the fourth

recording, the SD estimate was closer to the farm parameter being estimated in 11 farms

and the EBLUP estimate was closer in the remaining five farms. In both sets of farms, the

SD and EBLUP estimates were either both above or both below the farm parameter being

estimated or one was above and the other below. The net impact was that the EBLUP

overall farm estimate was closer to the population overall farm mean.

4.2.2. ARE and ASE results

The mean (over 100 repeated sampling trials) AREs and ASEs obtained with the

EBLUP estimator were the smallest in 96.1 and 88.2%, respectively, of the 51 cases of

estimating the mean response over all farms over all cow responses ðseven recordings�
five responses ¼ 35 casesÞ and all sow responses ðfour recordings � four responses ¼
16 casesÞ using a sample size of 100. When the sample size was lowered to 25, these

percentages fell to 76.5 and 58.8%, respectively. With only a single exception, when the
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mean ARE and ASE obtained with the EBLUP was not the smallest, that obtained by

the RS estimator was the smallest. So in estimating the mean over all farms, the enhan-

cedÂprecision of the estimates obtained by the EBLUP estimator—coupled with the

closeness of these estimates to the parameter—makes the EBLUP estimator an attractive

option.

4.3. General discussion

It is recognized that most production parameters are now recorded in computer systems

and in some contexts there is less need to sample such data bases. However, if some agency

desires to monitor a population to get the ‘‘big picture’’ of the health and productivity of the

population over a large number of farms and to do it frequently and in a timely manner,

certainly sampling will be involved to enhance the convenience and cost effectiveness of

the process. In such an undertaking, the farm-specific estimates might not be as relevant to

the individual farm—but having farm-specific mean estimates close to the parameter being

estimated lends credibility to the sampling process used to produce the estimated mean

responses over all farms.

The full utility of small-area-estimation methods would be realized when applied to

infectious-disease monitoring where the expense of testing all individual animals may be

high relative to the cost of visiting the farm and getting set up to collect samples. Small-

area-estimation methods also would be more directly applicable in monitoring the status

of some nutrient in animals; probably there would not be complete information on the

farm and it would be too costly to obtain such information without sampling. It should

also be remembered that farms in some countries do not have the same data-collection

and -storage capabilities as farms in extremely developed countries. Small-area estimation

could be very useful in monitoring animal health and production in these countries—

providing both farm-specific and over-all-farm estimates.

The present study is not exhaustive; it was not intended to be exhaustive but rather to be a

start. Among the many avenues for future work that could be proposed, I am particularly

interested in the application of these methods to binary responses because of their obvious

relevance in epidemiology and in a similar in-depth applied evaluation of the Baysian

approaches that have been proposed.

5. Conclusion

The present results would seem to favor the EBLUP estimator in situations where a

lower proportion of the total population of sampling units would be sampled. This is the

situation that would be desired in the context of monitoring a large food–animal population

constrained by limited resources. The EBLUP estimator appears to compensate adequately

for changes in sample size; the SD estimator seems to be more affected by the diminished

influence of its regression component as the sample size is reduced. Errors associated with

mean estimates (both farm-specific and over all farms) produced using the EBLUP

estimator frequently offer enhanced precision to EBLUP estimates—complementing their

strong validity attributes.
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Appendix A

Regressions required to obtain EBLUP estimate:

1. ðyjik � yjiwÞ=x
1=2
ik on ðxik � xiwÞ=x

1=2
ik to obtain SSEð1Þj to estimate s2

ej
,

ŝ2
ej
¼

SSEð1Þj

m � n � 1

where yjik is the response at time j of the kth sampled animal from the ith farm;

yjiw ¼
Pmi

k¼1ðyjik=xikÞ=
Pmi

k¼1ð1=xikÞ; xik the base time response of the kth sampled

animal from the ith farm; xiw ¼ mi=
Pmi

k¼1ð1=xikÞ; m ¼
PN

i¼1mi, the total number of

responding animals, the sample size; mi the sample size of ith sampled farm,

0 � mi � Mi; Mi the total number of animals on the ith farm; n the total number of

farms sampled.

2. yjik=x
1=2
ik on ½1=x

1=2
ik ; x

1=2
ik 
 to obtain SSEð2Þj to estimate s2

vj
; shown below.

3. ðyjik � âjiyjiwÞ=x
1=2
ik on ½ð1 � âjiÞ=x

1=2
ik ; ðxik � âjixiwÞ=x

1=2
ik 
 to estimate b1j and b2j, where

âji ¼ 1 � ð1 � ĝjiÞ1=2
; ĝji ¼ ŝ2

vj
=ðŝ2

vj
þ ðŝ2

ej
=wji:ÞÞ; wji: ¼

Pmi

k¼1wjik; wjik ¼ 1=k2
jik;

kjki ¼ x
1=2
ik .

Note: all three regressions are through the origin.

Computation of ŝ2
vj

ŝ2
vj
¼ maxð0; ~s2

vj
Þ

where ~s2
vj
¼Z�1

		j½SSEð2Þj�ðn� pÞŝ2
ej

; Z		j ¼

Pn
i¼1wji:ð1� wji:x

0
iwA�1

j xiwÞ; wji:¼
Pmi

k¼1wjik;

xiw¼½1; xiw
; a 1�2 vector; xiw¼mi=
Pmi

k¼1ð1=xikÞ; Aj¼
Pn

i¼1

Pmi

k¼1ð1=xikÞ n

n
Pn

i¼1

Pmi

k¼1xik

� �
,

a 2 � 2 matrix; xij is the base time response of the kth sampled animal from the ith farm;

n the total number of farms sampled; mi the sample size of the ith sampled farm.
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