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Introduction: Why variability?

Every single individual is unique

e First cloned cat /S/in et al Nature. 2002
« Donor (left) and clone (right) are genetically identical
e Coat color is not the same

= Epigenetic variability

Source: College of Veterinary Medicine and Biomedical Sciences, A&M University, Texas, USA 2



Introduction: Epigenetics

What is epigenetics?

Epigenetics is the study of changes to the genome which are not
caused by alterations in the DNA sequence

Chemical compounds modify the genome “on top” of it

Epigenetic modifications are highly dynamic and form the
intersection between the genome and the environment

They play an important role in controlling gene expression and
genomic (in-)stability — phenotype

What do epigenetic modifications do?

Many different cells in our body: brain cells, blood cells, bone cells...
They all have essentially the same genome

Epigenetic modifications influence which genes are active and
which proteins are produced in a cell, giving rise to the phenotype

Multicellular organism has one genome but many epigenomes



Introduction: Epigenetics

DNA methylation
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Adapted from jonlieffmd.com

« DNA methylation is the most studied epigenetic modification
« Adds methyl group to DNA base cytosine — methylcytosine
« Regulates transcription, X chromosome inactivation, etc.



Introduction: DNA methylation

DNA methylation and transcription
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Introduction: DNA methylation

Example: Agouti gene variable methylation

« Agouti promoter methylated (right)
— Gene not expressed
— Brown healthy mouse

« Agouti promoter unmethylated (left)
— Gene expressed

These two mice are genetically identical

— Yellow obese mouse with diabetes, cancer and have the same age

Source: learn.genetics.edu

« Depends on diet of mother during pregnancy:
methyl-rich or standard diet

« Gene can be methylated to varying degrees
« Even differs from cell to cell

Source: Morgan et al. Nat Genet. 1999



Introduction: Biological variability

‘“Life is a study in contrasts between
randomness and determinism”

Leading Edge

Nature, Nurture, or Chance: Stochastic Gene
Expression and Its Consequences

Arjun Raj' and Alexander van Oudenaarden'*

'Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*Correspondence: avano@mit.edu

DOl 10.1016/j.cell.2008.09.050

Gene expression is a fundamentally stochastic process, with randomness in transcription and
translation leading to cell-to-cell variations in mRNA and protein levels. This variation appears
in organisms ranging from microbes to metazoans, and its characteristics depend both on the
biophysical parameters governing gene expression and on gene network structure. Stochastic gene
expression has important consequences for cellular function, being beneficial in some contexts
and harmful in others. These situations include the stress response, metabolism, development,
the cell cycle, circadian rhythms, and aging.

Introduction et al. (1990). They examined the effect of different doses of
Life is a study in contrasts between randomness and deter-  glucocorticoid on the expression of a glucocorticoid-respon-
minism: from the chaos of biomolecular interactions to the sive transgene encoding beta-galactosidase and found that
precise coordination of development, living organisms are the cell-to-cell variability in the expression of the transgene




Introduction: Biological variability

Biological variability

« Genetically identically cells or organisms display an incredible
variety of phenotypes, even in homogenous environments

« Arises from randomness and noise present in all biological systems
and processes

« This variability

— plays a key role in development and cellular differentiation in
multicellular organisms allowing for selection and propagation of cell
type specific expression

— enables rapid adaptation to changing environmental conditions
leading to benefits in survival, e.g. stress-response

— leads to population robustness, e.g. allowing for the tight control of
programmed cell death by graded responses of the population of cells



Introduction: Biological variability

Different levels of variability

« Cell-to-cell variability in a population of cells
« Inter-individual variability of multicellular organisms
« Variability within and across populations and species

« Spatiotemporal variability

Different levels of variability are related to each other

« Correspondence between measuring variability at one time point in
a population of 1,000 cells and measuring the variability of one cell
across 1,000 time points

« Correlation between cell-to-cell variability and variability across cell
populations, and even across species to a lesser extent



Introduction: Biological variability

Importance of variability

« Aging

— Increased variability with age
« Disease

— Cancer!

— Autoimmune diseases:
Type 1 Diabetes, Rheumatoid Arthritis...

* Therapy
— Fractional killing
— Therapeutic resistance
— Personalized medicine!
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Previous work: ICGC - Chronic Lymphocytic Leukemia

Chronic Lymphocytic Leukemia (CLL)

« Most frequent leukemia in adults

« Two subtypes based on the
mutational status of IGHV region:

— M-CLL
« high level of IGHV mutations
 favorable clinical outcome

— U-CLL
* no or low level of IGHV mutations
« worse clinical outcome

CLL cells

Source: Wikimedia.org
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Previous work: ICGC - Chronic Lymphocytic Leukemia

International Cancer Genome Consortium

Spain: The ICGC Chronic Lymphocytic Leukemia Genome Project

CLL methylome study /Kulis et al. Nat Genet. 2072]

CLL transcriptome study /Ferreira et al. Genome Res. 2074]
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Previous work: ICGC - Chronic Lymphocytic Leukemia

CLL differential expression variability study

« DNA methylation patterns directly related to known subtypes
« But no separation of M-CLL and U-CLL in gene expression data
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« Difference in variability between M-CLL and U-CLL?
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Previous work: ICGC - Chronic Lymphocytic Leukemia

Differential variability

« Differential mean — different but consistent mean
 Differential variability — small vs large deviations from mean

Differential mean Differential variability
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« No difference between M-CLL ¢ Increased variability in U-CLL!

and U-CLL in gene expression y



Previous work: ICGC - Chronic Lymphocytic Leukemia

Variability significantly increased in U-CLL

®e 2o " Cell death and
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Interactions taken from Lefebvre et al, Mol Syst Biol, 2010. Figure adapted from Ecker et al, Genome Med, 2015. 15



Previous work: BLUEPRINT - Normal blood cells h

BLUEPRINT

« Large-scale European research effort of the International Human
Epigenome Consortium (IHEC)

« Generation of > 100 reference epigenomes of distinct normal
human hematopoietic cells and their malignant counterparts

« Investigation of biological processes and mechanisms
systematically linking epigenetic variation with phenotypic plasticity
BLUEPRINT Human Variation Epigenome Project

« Chen et al. Genetic drivers of epigenetic and transcriptional
variation in human immune cells. Ce//. 2016.

« Ecker et al Genome-wide analysis of differential transcriptional and
epigenetic variability across human immune cell types. Genome
Biol. 2016.

16



Previous work: BLUEPRINT - Normal blood cells

Differential variability in normal blood cells
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Previous work: BLUEPRINT - Normal blood cells

Increased variability in neutrophils
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Previous work: BLUEPRINT - Normal blood cells

Sex-specific differential expression
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Introduction to Blue Zones

Blue Zones: Highest longevity in the world
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Image adapted from www.bluezones.com and www.ezilon.com 20



Introduction

to Blue Zones

Blue Zone of Nicoya

* Nicoya peninsula is the largest Blue Zone in the world

« Nicoyans 60 years old have seven times the probability of reaching
100 years compared to the rest of Costa Rica
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The Nicoya region of Costa Rica: a high longevity island for
elderly males
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CRELES - Epigenetic variability in exceptional longevity

DNA methylation pilot study

McEwen et al. Epigenetics & Chromatin (2017) 10:21 : : :
DO 10,1 136/513072.017.0128-2 Epigenetics & Chromatin

RESEARCH Open Access

Differential DNA methylation @ o
and lymphocyte proportions in a Costa Rican
high longevity region

Lisa M. McEwen'®, Alexander M. Morin', Rachel D. Edgar’, Julia L. Maclsaac', Meaghan J. Jones',
William H. Dow?, Luis Rosero-Bixby?, Michael S. Kobor' and David H. Rehkopf*”

Abstract
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CRELES - Epigenetic variability in exceptional longevity

Pilot data set

« Cross-sectional subsample (n=95) of Costa Rican Longevity and
Healthy Aging Study (CRELES, n>2500)

« Age-matched whole blood DNA methylation (450K array)
of Nicoyans and non-Nicoyan Costa Ricans in two age groups

Table 1 Cohort characteristics (means and percents),
Nicoyans and non-Nicoyans

Characteristics Nicoya Non-Nicoya
(n=48) (n=47)

Age (mean in years) 83(14) 85(16)

Female (%) 57 55

Low education (%) 30 68

Low wealth (%) 35 21

Currently smoke (%) 4 6

Systolic blood pressure (mean mmHg) 139 (23) 140 (25)

Diastolic blood pressure (mean 78(12) 78(13)

mmHg)
Body mass index (mean) 24.(7.1) 25(5.8)

McEwen et al., Epigenetics Chromatin, 2017. 23



CRELES - Epigenetic variability in exceptional longevity

The epigenetic drift

« Epigenetic variability increases with age

 First shown in monozygotic twins /Fraga et al, PNAS, 2005]
« Also happens in the general population

« Increased epigenetic variability is associated with disease

Sesearch.

Genetic and environmental exposures constrain

Epigenetic differences arise during the lifetime epigenetic drift over the human life course
of monozygotic twins Sorka Shah, ¥ Al F. McRae, * Riccando £ Mavions, 4 Sarah £. Marms,**
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CRELES - Epigenetic variability in exceptional longevity

Global patterns of variability (sample-wise)
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CRELES - Epigenetic variability in exceptional longevity

Global patterns of variability (CpG-wise)
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CRELES - Epigenetic variability in exceptional longevity

Top 100 variable CpGs

Top MV CR old Top MV BZ old

CR young -
CR old
BZ old

BZ young
CR young -
CR old
BZ old
BZ young -

27



CRELES -

Epigenetic variability in exceptional longevity

Top 100 CpGs with high variability in BZ

« 32 CpGs in 22 genes (9 in promoters, 17 in bodies, 6 in IGRs)

GFPT2 (4 CpGs): Glucose flux in hexosamine pathway

MIR885 (3 CpGs)

RPTOR: Control of rapamycin complex activity in response to
nutrient

KCNGZ: Potassium channel activity

ALOXES3: Lipoxygenase

FN3K: Deglycation of proteins and fructoselysine

CCS: Copper delivery, copper chaperone

« GREAT functional enrichment (> 20 significant results), e.g.:

Glutamine metabolic process
Sugar biosynthetic process
Regulation of fatty acid biosynthetic process

GREAT: McLean et al., Nat Biotechnol, 2010. 28



CRELES - Epigenetic variability in exceptional longevity

Differential variability

« Differential mean — different but consistent mean
 Differential variability — small vs large deviations from mean

Differential mean Differential variability
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CRELES - Epigenetic variability in exceptional longevity

Statistically significant differential variability

« Applied combination of DiffVar and MV-score
Adjusted p-value (BH) < 0.05 and MV-difference > 10%

« CR old versus young: 0 CpGs 1 and 0 CpGs |

« BZ old versus young: 29 CpGs 1 and 5 CpGs |
18 genes (9 in promoter, 9 in body, 11 in IGR), e.q.:
— NKX6-1:1Insulin secretion, glucose detection,
— FOLRI:Folic acid receptor,
— GPRI176:
— DAGLA: Lipid metabolism, metal binding,
— FLT3:ATP binding,
— RIPK4. Serine/Threonine Kinase, ATP binding
— KCNC4:1on and potassium channel activity
— TACR3: Regulation of heart rate, blood pressure

DiffVar: Phipson & Oshlack, Genome Biol, 2014. MV: Alemu et al., NAR, 2014. Ecker et al., Genome Biol, 2017. 30
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CRELES - Epigenetic variability in exceptional longevity

Correlation between hypervariable CpGs
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CRELES - Epigenetic variability in exceptional longevity

Network of genes with sig increased variability
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Sex-specific differential methylation

« Applied Bumphunter and DMRCate
Adjusted p-value (BH) < 0.05 and region > 3 neighboring CpGs

« BZ male versus female: 2 CpGs 1 and 10 CpGs |

8 genes (5 in promoter, 3 in body, 2 in IGR), e.g.:

—» — NFYA: TF subunit, enhancer, requlation of cholesterol biosynthesis
— ORZL12: Olfactory receptor,
— DOX43:RNA binding, ATP binding
— PSMA4A8: Proteasome subunit, hydrolase activity, spermatogenesis
— PRRTT: Proline rich transmembrane protein, response to stimulus
— ASCL2: TF activity, multicellular organism development

« CR male versus female: 3 CpGs 1 and 6 CpGs |
3 genes (2 in promoter, 1 in body), e.g.:
—>» — NFYA: TF subunit, enhancer, requlation of cholesterol biosynthesis

Bumphunter: Jaffe et al., Int J Epidemiol, 2012. DMRCate: Peters et al., Epigenetics Chromatin, 2015. 34
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NFYA hypermethylation in males of CR

Beta value
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Conclusion and discussion

« Pathways and functions involved in all BZ-specific patterns:

— Nutritional factors, metabolism,
(GFPT2 RPTOR FOLR1, NKX6-1, NFYA)

« Discussion:
— Possible technical and biological confounders
— Cell subpopulations
— Relation single cell variability and interindividual variability
— Larger dataset necessary

« Future plan:
— 1000 methylomes and matched genotypes currently processed
— Integration of further healthy aging cohorts

— Longitudinal follow-up of CRELES participants
37



Acknowledgments S .

o f) TIALHE 2
UCL Medical Genomics Group
Stephan Beck
Andy Feber
Amy Webster
Ismail Moghul

ICGC (CLL) & IHEC (BLUEPRINT)
Inaki Martin-Subero (University of Barcelona)

Vera Pancaldi (Cancer Research Center of Toulouse)
Dirk Paul (University of Cambridge) Stanford

CRELES

David Rehkopf (University of Stanford)

Lisa McEwen (University of British Columbia)
Luis Rosero-Bixby (University of Costa Rica) B k 1
Allan Orozco (University of Costa Rica) CIrkC 6)7
Juan Porras (University of Costa Rica) T
Michael Kobor (University of British Columbia) W~ COSTARICA
Will Dow (Berkeley University of California)

University

38



THANK YOU!
"




